Layer-by-layer assembled nanowire networks enable graph-theoretical design of multifunctional coatings

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-10-25 DOI:10.1016/j.matt.2024.09.014
Wenbing Wu, Alain Kadar, Sang Hyun Lee, Hong Ju Jung, Bum Chul Park, Jeffery E. Raymond, Thomas K. Tsotsis, Carlos E.S. Cesnik, Sharon C. Glotzer, Valerie Goss, Nicholas A. Kotov
{"title":"Layer-by-layer assembled nanowire networks enable graph-theoretical design of multifunctional coatings","authors":"Wenbing Wu, Alain Kadar, Sang Hyun Lee, Hong Ju Jung, Bum Chul Park, Jeffery E. Raymond, Thomas K. Tsotsis, Carlos E.S. Cesnik, Sharon C. Glotzer, Valerie Goss, Nicholas A. Kotov","doi":"10.1016/j.matt.2024.09.014","DOIUrl":null,"url":null,"abstract":"Complex multifunctional coatings combining order and disorder are central for information, biomedical, transportation, and energy technologies. Their scalable fabrication is possible using nanostructured composites made by layer-by-layer assembly (LBL). Here, we show that structural descriptions encompassing their nonrandom disorder and related property-focused design are possible using graph theory (GT). Two-dimensional images of LBL films of silver and gold nanowires (NWs) were used to calculate GT representations. We found that random stick computational models often used to describe NW, nanofiber, and nanotube materials give inaccurate predictions of their structure. Concurrently, image-informed GT models accurately predict the structure and properties of the LBL films, including the unexpected nonlinearity of charge transport vs. LBL cycles. The conductivity anisotropy in LBL composites, not readily detectable with microscopy, was accurately predicted using GT models. Spray-assisted LBL offers the direct translation of GT predictions to additive, scalable coatings for drones and potentially other technologies.","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.09.014","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Complex multifunctional coatings combining order and disorder are central for information, biomedical, transportation, and energy technologies. Their scalable fabrication is possible using nanostructured composites made by layer-by-layer assembly (LBL). Here, we show that structural descriptions encompassing their nonrandom disorder and related property-focused design are possible using graph theory (GT). Two-dimensional images of LBL films of silver and gold nanowires (NWs) were used to calculate GT representations. We found that random stick computational models often used to describe NW, nanofiber, and nanotube materials give inaccurate predictions of their structure. Concurrently, image-informed GT models accurately predict the structure and properties of the LBL films, including the unexpected nonlinearity of charge transport vs. LBL cycles. The conductivity anisotropy in LBL composites, not readily detectable with microscopy, was accurately predicted using GT models. Spray-assisted LBL offers the direct translation of GT predictions to additive, scalable coatings for drones and potentially other technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逐层组装的纳米线网络实现了多功能涂层的图论设计
有序与无序相结合的复杂多功能涂层是信息、生物医学、交通和能源技术的核心。利用逐层组装(LBL)技术制造的纳米结构复合材料可以实现这些涂层的规模化制造。在这里,我们展示了利用图论(GT)可以实现包含非随机无序和相关特性设计的结构描述。银纳米线和金纳米线 (NW) LBL 薄膜的二维图像被用来计算 GT 表示。我们发现,通常用于描述纳米线、纳米纤维和纳米管材料的随机棒计算模型对其结构的预测并不准确。同时,图像信息 GT 模型能准确预测 LBL 薄膜的结构和特性,包括电荷传输与 LBL 周期之间意想不到的非线性关系。LBL 复合材料中的电导率各向异性在显微镜下不易察觉,但通过 GT 模型却能准确预测。喷涂辅助 LBL 可将 GT 预测直接转化为用于无人机和其他潜在技术的可扩展添加涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Vacancy-ordered double-perovskite-based memristors for image processing and pattern recognition High-entropy alloy electrocatalysts screened using machine learning informed by quantum-inspired similarity analysis Layer-by-layer assembled nanowire networks enable graph-theoretical design of multifunctional coatings Drug origami: A computation-guided approach for customizable drug release kinetics of oral formulations Metal-lattice-heredity synthesis of single-crystalline 2D transition metal oxides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1