Electrothermal Conversion of Methane to Methanol at Room Temperature with Phosphotungstic Acid

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-10-26 DOI:10.1002/anie.202417251
Jinquan Chang, Sikai Wang, Max J. Hülsey, Sheng Zhang, Shi Nee Lou, Xinbin Ma, Ning Yan
{"title":"Electrothermal Conversion of Methane to Methanol at Room Temperature with Phosphotungstic Acid","authors":"Jinquan Chang, Sikai Wang, Max J. Hülsey, Sheng Zhang, Shi Nee Lou, Xinbin Ma, Ning Yan","doi":"10.1002/anie.202417251","DOIUrl":null,"url":null,"abstract":"Traditional methods for the aerobic oxidation of methane to methanol frequently require the use of noble metal catalysts or flammable H2-O2 mixtures. While electrochemical methods enhance safety and may avoid the use of noble metals, these processes suffer from low yields due to limited current density and/or low selectivity. Here, we design an electrothermal process to conduct aerobic oxidation of methane to methanol at room temperature using phosphotungstic acid (PTA) as a redox mediator. When electrochemically reduced, PTA activates methane with O2 to produce methanol selectively. The optimum productivity reaches 29.45 [[EQUATION]] with approximately 20.3% overall electron yield. Under continuous operation, we achieved 19.90 [[EQUATION]] catalytic activity, over 74.3% methanol selectivity, and 10 hours durability. This approach leverages reduced PTA to initiate thermal catalysis in solution phase, addressing slow methane oxidation kinetics and preventing overoxidations on electrode surfaces. The current density towards methanol production increased over 40 times compared with direct electrochemical processes. The in-situ generated hydroxyl radical, from the reaction of reduced PTA and oxygen, plays an important role in the methane conversion. This study demonstrates reduced polyoxotungstate as a viable platform to integrate thermo- and electrochemical methane oxidation at ambient conditions.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417251","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional methods for the aerobic oxidation of methane to methanol frequently require the use of noble metal catalysts or flammable H2-O2 mixtures. While electrochemical methods enhance safety and may avoid the use of noble metals, these processes suffer from low yields due to limited current density and/or low selectivity. Here, we design an electrothermal process to conduct aerobic oxidation of methane to methanol at room temperature using phosphotungstic acid (PTA) as a redox mediator. When electrochemically reduced, PTA activates methane with O2 to produce methanol selectively. The optimum productivity reaches 29.45 [[EQUATION]] with approximately 20.3% overall electron yield. Under continuous operation, we achieved 19.90 [[EQUATION]] catalytic activity, over 74.3% methanol selectivity, and 10 hours durability. This approach leverages reduced PTA to initiate thermal catalysis in solution phase, addressing slow methane oxidation kinetics and preventing overoxidations on electrode surfaces. The current density towards methanol production increased over 40 times compared with direct electrochemical processes. The in-situ generated hydroxyl radical, from the reaction of reduced PTA and oxygen, plays an important role in the methane conversion. This study demonstrates reduced polyoxotungstate as a viable platform to integrate thermo- and electrochemical methane oxidation at ambient conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用磷钨酸在室温下将甲烷电热转化为甲醇
将甲烷有氧氧化为甲醇的传统方法通常需要使用贵金属催化剂或易燃的 H2-O2 混合物。虽然电化学方法提高了安全性并可避免使用贵金属,但由于电流密度有限和/或选择性低,这些工艺的产量较低。在此,我们设计了一种电热工艺,利用磷钨酸(PTA)作为氧化还原介质,在室温下将甲烷有氧氧化为甲醇。当电化学还原时,PTA 会用氧气激活甲烷,从而选择性地产生甲醇。最佳生产率达到 29.45 [[方程]],总电子产率约为 20.3%。在连续操作下,我们实现了 19.90 [[EQUATION]] 的催化活性、超过 74.3% 的甲醇选择性和 10 小时的耐久性。这种方法利用降低的 PTA 在溶液相中启动热催化,解决了甲烷氧化动力学缓慢的问题,并防止了电极表面的过度氧化。与直接电化学过程相比,生产甲醇的电流密度提高了 40 多倍。还原型 PTA 与氧气反应产生的原位羟基自由基在甲烷转化过程中发挥了重要作用。这项研究表明,还原型多氧钨酸盐是在环境条件下将热氧化和电化学甲烷氧化结合起来的可行平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Unravelling the Effect of Crystal Facet of Derived-Copper Catalysts on the Electroreduction of Carbon Dioxide under Unified Mass Transport Condition Carbon Nanocage Supported Asymmetrically Coordinated Nickle Single-Atom for Enhanced CO2 Electroreduction in Membrane Electrode Assembly Electrothermal Conversion of Methane to Methanol at Room Temperature with Phosphotungstic Acid Printing Cell Embedded Sacrificial Strategy for Microvasculature using Degradable DNA Biolubricant Highly Strained, Fully π-Conjugated Porphyrin Cyclophanes: Template-free Synthesis and Global Aromaticity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1