Zhiqian Hou, Chenghao Cui, Yanan Yang, Zhikun Huang, Yu Zhuang, Ye Zeng, Xi Gong, Tao Zhang
{"title":"Strong Metal-Support Interactions in Heterogeneous Oxygen Electrocatalysis","authors":"Zhiqian Hou, Chenghao Cui, Yanan Yang, Zhikun Huang, Yu Zhuang, Ye Zeng, Xi Gong, Tao Zhang","doi":"10.1002/smll.202407167","DOIUrl":null,"url":null,"abstract":"Molecular oxygen redox electrocatalysis involves oxygen reduction and evolution as core reactions in various energy conversion and environmental technology fields. Strong metal-support interactions (SMSIs) based nanomaterials are regarded as desirable and state-of-the-art heterogeneous electrocatalysts due to their exceptional physicochemical properties. Over the past decades, considerable advancements in theory and experiment have been achieved in related studies, especially in modulating the electronic structure and geometrical configuration of SMSIs to enable activity, selectivity, and stability. In this focuses on the concept of SMSI, explore their various manifestations and mechanisms of action, and summarizes recent advances in SMSIs for efficient energy conversion in oxygen redox electrocatalysis applications. Additionally, the correlation between the physicochemical properties of different metals and supports is systematically elucidated, and the potential mechanisms of the structure–activity relationships between SMSIs and catalytic performance are outlined through theoretical models. Finally, the obstacles confronting this burgeoning field are comprehensively concluded, targeted recommendations and coping strategies are proposed, and future research perspectives are outlined.","PeriodicalId":228,"journal":{"name":"Small","volume":"49 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407167","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular oxygen redox electrocatalysis involves oxygen reduction and evolution as core reactions in various energy conversion and environmental technology fields. Strong metal-support interactions (SMSIs) based nanomaterials are regarded as desirable and state-of-the-art heterogeneous electrocatalysts due to their exceptional physicochemical properties. Over the past decades, considerable advancements in theory and experiment have been achieved in related studies, especially in modulating the electronic structure and geometrical configuration of SMSIs to enable activity, selectivity, and stability. In this focuses on the concept of SMSI, explore their various manifestations and mechanisms of action, and summarizes recent advances in SMSIs for efficient energy conversion in oxygen redox electrocatalysis applications. Additionally, the correlation between the physicochemical properties of different metals and supports is systematically elucidated, and the potential mechanisms of the structure–activity relationships between SMSIs and catalytic performance are outlined through theoretical models. Finally, the obstacles confronting this burgeoning field are comprehensively concluded, targeted recommendations and coping strategies are proposed, and future research perspectives are outlined.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.