Synergistic dual-layer passivation boosts efficiency and stability in perovskite solar cells using naphthol sulfonate.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2024-10-25 DOI:10.1039/d4mh01311e
Hao Liu, Ning Jiang, Jintao Wang, Shuming Chen, Jian Zhang, Yu Duan
{"title":"Synergistic dual-layer passivation boosts efficiency and stability in perovskite solar cells using naphthol sulfonate.","authors":"Hao Liu, Ning Jiang, Jintao Wang, Shuming Chen, Jian Zhang, Yu Duan","doi":"10.1039/d4mh01311e","DOIUrl":null,"url":null,"abstract":"<p><p>The performance and stability of perovskite solar cells (PSCs) are critically influenced by the interfacial properties between the perovskite absorption layer and the electron transport layer (ETL). This study introduces a novel interfacial engineering approach using dipotassium 7-hydroxynaphthalene-1,3-disulfonate (K-NDS) as a multifunctional passivator to enhance both the SnO<sub>2</sub> ETL and the perovskite absorber layer. The sulfonic acid groups (-SO<sub>3</sub><sup>-</sup>) in K-NDS effectively fill oxygen vacancies on the SnO<sub>2</sub> surface, while the hydroxyl groups (-OH) passivate dangling bonds, improving the crystallinity of the perovskite film. Additionally, the diffusion of K<sup>+</sup> from the SnO<sub>2</sub> ETL into the perovskite layer optimizes energy level alignment, thereby enhancing charge carrier extraction and transport. This bifacial passivation strategy has significantly improved both the power conversion efficiency (PCE) and long-term stability of PSCs. The modified devices achieved a champion PCE of 23.00% and an open-circuit voltage (<i>V</i><sub>OC</sub>) of 1.172 V. Furthermore, these devices maintained 75% of their initial PCE even after 1000 hours of storage under indoor environmental conditions. This work demonstrates the effectiveness of synergistic interfacial passivation in advancing the performance and durability of PSCs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01311e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The performance and stability of perovskite solar cells (PSCs) are critically influenced by the interfacial properties between the perovskite absorption layer and the electron transport layer (ETL). This study introduces a novel interfacial engineering approach using dipotassium 7-hydroxynaphthalene-1,3-disulfonate (K-NDS) as a multifunctional passivator to enhance both the SnO2 ETL and the perovskite absorber layer. The sulfonic acid groups (-SO3-) in K-NDS effectively fill oxygen vacancies on the SnO2 surface, while the hydroxyl groups (-OH) passivate dangling bonds, improving the crystallinity of the perovskite film. Additionally, the diffusion of K+ from the SnO2 ETL into the perovskite layer optimizes energy level alignment, thereby enhancing charge carrier extraction and transport. This bifacial passivation strategy has significantly improved both the power conversion efficiency (PCE) and long-term stability of PSCs. The modified devices achieved a champion PCE of 23.00% and an open-circuit voltage (VOC) of 1.172 V. Furthermore, these devices maintained 75% of their initial PCE even after 1000 hours of storage under indoor environmental conditions. This work demonstrates the effectiveness of synergistic interfacial passivation in advancing the performance and durability of PSCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用萘酚磺酸盐的双层钝化协同提高了过氧化物太阳能电池的效率和稳定性。
包晶太阳能电池(PSC)的性能和稳定性受到包晶吸收层和电子传输层(ETL)之间界面特性的重要影响。本研究介绍了一种新型界面工程方法,即使用 7-羟基萘-1,3-二磺酸二钾(K-NDS)作为多功能钝化剂来增强 SnO2 ETL 和包晶吸收层。K-NDS 中的磺酸基(-SO3-)能有效填补 SnO2 表面的氧空位,而羟基(-OH)则能钝化悬空键,从而提高了包晶体薄膜的结晶度。此外,K+从二氧化锡 ETL 扩散到过氧化物层,优化了能级排列,从而增强了电荷载流子的萃取和传输。这种双面钝化策略显著提高了 PSC 的功率转换效率(PCE)和长期稳定性。改进后的器件实现了 23.00% 的冠军 PCE 和 1.172 V 的开路电压 (VOC)。此外,即使在室内环境条件下存储 1000 小时后,这些器件仍能保持 75% 的初始 PCE。这项工作证明了协同界面钝化在提高 PSC 性能和耐用性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Outstanding high-temperature capacitive performance in all-organic dielectrics enabled by synergistic optimization of molecular traps and aggregation structures. Piezo-to-piezo (P2P) conversion: simultaneous β-phase crystallization and poling of ultrathin, transparent and freestanding homopolymer PVDF films via MHz-order nanoelectromechanical vibration. Using a stable radical as an "electron donor" to develop a radical photosensitizer for efficient type-I photodynamic therapy. Biological metasurfaces based on tailored Luria Bertani Agar growth medium formulations for photonic applications. Hydrogen sulfide-generating semiconducting polymer nanoparticles for amplified radiodynamic-ferroptosis therapy of orthotopic glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1