Drug-Induced Differential Gene Expression Analysis on Nanoliter Droplet Microarrays: Enabling Tool for Functional Precision Oncology.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-01-01 Epub Date: 2024-10-23 DOI:10.1002/adhm.202401820
Razan El Khaled El Faraj, Shraddha Chakraborty, Meijun Zhou, Morgan Sobol, David Thiele, Lilly M Shatford-Adams, Maximiano Correa Cassal, Anne-Kristin Kaster, Sascha Dietrich, Pavel A Levkin, Anna A Popova
{"title":"Drug-Induced Differential Gene Expression Analysis on Nanoliter Droplet Microarrays: Enabling Tool for Functional Precision Oncology.","authors":"Razan El Khaled El Faraj, Shraddha Chakraborty, Meijun Zhou, Morgan Sobol, David Thiele, Lilly M Shatford-Adams, Maximiano Correa Cassal, Anne-Kristin Kaster, Sascha Dietrich, Pavel A Levkin, Anna A Popova","doi":"10.1002/adhm.202401820","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-induced differential gene expression analysis (DGEA) is essential for uncovering the molecular basis of cell phenotypic changes and understanding individual tumor responses to anticancer drugs. Performing high throughput DGEA is challenging due to the high cost and labor-intensive multi-step sample preparation protocols. In particular, performing drug-induced DGEA on cancer cells derived from patient biopsies is even more challenging due to the scarcity of available cells. A novel, miniaturized, nanoliter-scale method for drug-induced DGEA is introduced, enabling high-throughput and parallel analysis of patient-derived cell drug responses, overcoming the limitations and laborious nature of traditional protocols. The method is based on the Droplet Microarray (DMA), a microscope glass slide with hydrophilic spots on a superhydrophobic background, facilitating droplet formation for cell testing. DMA allows microscopy-based phenotypic analysis, cDNA extraction, and DGEA. The procedure includes cell lysis for mRNA isolation and cDNA conversion followed by droplet pooling for qPCR analysis. In this study, the drug-induced DGEA protocol on the DMA platform is demonstrated using patient-derived chronic lymphocytic leukemia (CLL) cells. This methodology is critical for DGEA with limited cell numbers and promise for applications in functional precision oncology. This method enables molecular profiling of patient-derived samples after drug treatment, crucial for understanding individual tumor responses to anticancer drugs.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2401820"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202401820","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Drug-induced differential gene expression analysis (DGEA) is essential for uncovering the molecular basis of cell phenotypic changes and understanding individual tumor responses to anticancer drugs. Performing high throughput DGEA is challenging due to the high cost and labor-intensive multi-step sample preparation protocols. In particular, performing drug-induced DGEA on cancer cells derived from patient biopsies is even more challenging due to the scarcity of available cells. A novel, miniaturized, nanoliter-scale method for drug-induced DGEA is introduced, enabling high-throughput and parallel analysis of patient-derived cell drug responses, overcoming the limitations and laborious nature of traditional protocols. The method is based on the Droplet Microarray (DMA), a microscope glass slide with hydrophilic spots on a superhydrophobic background, facilitating droplet formation for cell testing. DMA allows microscopy-based phenotypic analysis, cDNA extraction, and DGEA. The procedure includes cell lysis for mRNA isolation and cDNA conversion followed by droplet pooling for qPCR analysis. In this study, the drug-induced DGEA protocol on the DMA platform is demonstrated using patient-derived chronic lymphocytic leukemia (CLL) cells. This methodology is critical for DGEA with limited cell numbers and promise for applications in functional precision oncology. This method enables molecular profiling of patient-derived samples after drug treatment, crucial for understanding individual tumor responses to anticancer drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳升液滴芯片上的药物诱导差异基因表达分析:功能性精准肿瘤学的有利工具。
药物诱导的差异基因表达分析(DGEA)对于揭示细胞表型变化的分子基础和了解个体肿瘤对抗癌药物的反应至关重要。由于高成本和劳动密集型多步骤样品制备方案,进行高通量 DGEA 具有挑战性。特别是,由于可用细胞的稀缺性,对来自患者活检组织的癌细胞进行药物诱导 DGEA 更具挑战性。本文介绍了一种新颖、微型化、纳升规模的药物诱导 DGEA 方法,该方法克服了传统方案的局限性和费力性,可对源自患者的细胞药物反应进行高通量并行分析。该方法基于液滴微阵列(DMA),这是一种在超疏水背景上带有亲水点的显微镜玻璃载玻片,有利于形成液滴进行细胞测试。DMA 可进行基于显微镜的表型分析、cDNA 提取和 DGEA。该过程包括细胞裂解以进行 mRNA 分离和 cDNA 转换,然后汇集液滴进行 qPCR 分析。本研究使用源自患者的慢性淋巴细胞白血病(CLL)细胞,演示了 DMA 平台上的药物诱导 DGEA 方案。该方法对于细胞数量有限的 DGEA 至关重要,有望应用于功能性精准肿瘤学。这种方法可以在药物治疗后对患者来源样本进行分子剖析,这对了解个体肿瘤对抗癌药物的反应至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
A Dual-Pipeline Lactate Removal Strategy to Reverse Vascular Hyperpermeability for the Management of Lipopolysaccharide-Induced Sepsis. Bioengineering Strategies for Treating Neointimal Hyperplasia in Peripheral Vasculature: Innovations and Challenges. Bioprinted Micro-Clots for Kinetic Analysis of Endothelial Cell-Mediated Fibrinolysis. Bioprinting Perfusable and Vascularized Skeletal Muscle Flaps for the Treatment of Volumetric Muscle Loss. Facile Fabrication of Injectable Multifunctional Hydrogels Based on Gallium-Polyphenol Networks with Superior Antibacterial Activity for Promoting Infected Wound Healing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1