{"title":"A Dual-Pipeline Lactate Removal Strategy to Reverse Vascular Hyperpermeability for the Management of Lipopolysaccharide-Induced Sepsis.","authors":"Shuangfeng Ge, Xing-Huo Wang, Juntao Fan, Haofei Liu, Youtao Xin, Xiaohui Li, Yunjian Yu, Ying-Wei Yang, Hui Gao","doi":"10.1002/adhm.202403592","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is an underappreciated yet severe threat to human life, marked by organ dysfunction and high mortality resulting from disordered inflammatory responses to blood infection. Unfortunately, no specific drugs are available for effective sepsis treatment. As a pivotal biomarker for sepsis, lactate levels are closely related to vascular permeability and sepsis-associated mortality. Herein, a dual-pipeline lactate removal strategy is reported from circulating blood to ameliorate vascular permeability and lipopolysaccharide (LPS)-induced sepsis. This is achieved by formulating lactate oxidase (LOX)-encapsulated hollow manganese dioxide (HMnO<sub>2</sub>) nanohybrids (LOX@HMnO<sub>2</sub>-P[5]A) bearing pillar[5]arene (P[5]A) macrocycle with excellent host-guest properties. The highly biocompatible nanohybrids enable direct lactate consumption through LOX catalytic degradation and block lactate production by P[5]A-mediated LPS trapping, allowing for dual-pipeline lactate removal to maximize the reversal of lactate-mediated vascular hyperpermeability. Besides, HMnO<sub>2</sub> cores decompose hydrogen peroxide produced from lactate oxidation into oxygen, further contributing to lactate consumption and mitigating the hypoxic inflammatory environment. In vivo investigations demonstrate that intravenous administration of LOX@HMnO<sub>2</sub>-P[5]A nanohybrids with extended blood circulation can effectively ameliorate endothelial barrier dysfunction, inflammatory responses, and multiple organ injury, ultimately improving survival outcomes in LPS-induced sepsis. Taken together, this dual-pipeline lactate removal strategy offers a promising approach for efficient sepsis treatment.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403592"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403592","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis is an underappreciated yet severe threat to human life, marked by organ dysfunction and high mortality resulting from disordered inflammatory responses to blood infection. Unfortunately, no specific drugs are available for effective sepsis treatment. As a pivotal biomarker for sepsis, lactate levels are closely related to vascular permeability and sepsis-associated mortality. Herein, a dual-pipeline lactate removal strategy is reported from circulating blood to ameliorate vascular permeability and lipopolysaccharide (LPS)-induced sepsis. This is achieved by formulating lactate oxidase (LOX)-encapsulated hollow manganese dioxide (HMnO2) nanohybrids (LOX@HMnO2-P[5]A) bearing pillar[5]arene (P[5]A) macrocycle with excellent host-guest properties. The highly biocompatible nanohybrids enable direct lactate consumption through LOX catalytic degradation and block lactate production by P[5]A-mediated LPS trapping, allowing for dual-pipeline lactate removal to maximize the reversal of lactate-mediated vascular hyperpermeability. Besides, HMnO2 cores decompose hydrogen peroxide produced from lactate oxidation into oxygen, further contributing to lactate consumption and mitigating the hypoxic inflammatory environment. In vivo investigations demonstrate that intravenous administration of LOX@HMnO2-P[5]A nanohybrids with extended blood circulation can effectively ameliorate endothelial barrier dysfunction, inflammatory responses, and multiple organ injury, ultimately improving survival outcomes in LPS-induced sepsis. Taken together, this dual-pipeline lactate removal strategy offers a promising approach for efficient sepsis treatment.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.