Songtao Fan, Zhihong Zhang, Qixing Nie, Michael Ackah, Shaoping Nie
{"title":"Rethinking the classification of non-digestible carbohydrates: Perspectives from the gut microbiome","authors":"Songtao Fan, Zhihong Zhang, Qixing Nie, Michael Ackah, Shaoping Nie","doi":"10.1111/1541-4337.70046","DOIUrl":null,"url":null,"abstract":"<p>Clarification is required when the term “carbohydrate” is used interchangeably with “saccharide” and “glycan.” Carbohydrate classification based on human digestive enzyme activities brings clarity to the energy supply function of digestible sugars and starch. However, categorizing structurally diverse non-digestible carbohydrates (NDCs) to make dietary intake recommendations for health promotion remains elusive. In this review, we present a summary of the strengths and weaknesses of the traditional dichotomic classifications of carbohydrates, which were introduced by food chemists, nutritionists, and microbiologists. In parallel, we discuss the current consensus on commonly used terms for NDCs such as “dietary fiber,” “prebiotics,” and “fermentable glycans” and highlight their inherent differences from the perspectives of gut microbiome. Moreover, we provide a historical perspective on the development of novel concepts such as microbiota-accessible carbohydrates, microbiota-directed fiber, targeted prebiotics, and glycobiome. Crucially, these novel concepts proposed by multidisciplinary scholars help to distinguish the interactions between diverse NDCs and the gut microbiome. In summary, the term NDCs created based on the inability of human digestive enzymes fails to denote their interactions with gut microbiome. Considering that the gut microbiome possesses sophisticated enzyme systems to harvest diverse NDCs, the subclassification of NDCs should be realigned to their metabolism by various gut microbes, particularly health-promoting microbes. Such rigorous categorizations facilitate the development of microbiome-targeted therapeutic strategies by incorporating specific types of NDCs.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 6","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70046","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clarification is required when the term “carbohydrate” is used interchangeably with “saccharide” and “glycan.” Carbohydrate classification based on human digestive enzyme activities brings clarity to the energy supply function of digestible sugars and starch. However, categorizing structurally diverse non-digestible carbohydrates (NDCs) to make dietary intake recommendations for health promotion remains elusive. In this review, we present a summary of the strengths and weaknesses of the traditional dichotomic classifications of carbohydrates, which were introduced by food chemists, nutritionists, and microbiologists. In parallel, we discuss the current consensus on commonly used terms for NDCs such as “dietary fiber,” “prebiotics,” and “fermentable glycans” and highlight their inherent differences from the perspectives of gut microbiome. Moreover, we provide a historical perspective on the development of novel concepts such as microbiota-accessible carbohydrates, microbiota-directed fiber, targeted prebiotics, and glycobiome. Crucially, these novel concepts proposed by multidisciplinary scholars help to distinguish the interactions between diverse NDCs and the gut microbiome. In summary, the term NDCs created based on the inability of human digestive enzymes fails to denote their interactions with gut microbiome. Considering that the gut microbiome possesses sophisticated enzyme systems to harvest diverse NDCs, the subclassification of NDCs should be realigned to their metabolism by various gut microbes, particularly health-promoting microbes. Such rigorous categorizations facilitate the development of microbiome-targeted therapeutic strategies by incorporating specific types of NDCs.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.