Chao Guo, Bin Tuo, Sebastian Seibold, Hang Ci, Bi-Le Sai, Han-Tang Qin, En-Rong Yan, Johannes H. C. Cornelissen
{"title":"Seasonally Changing Interactions of Species Traits of Termites and Trees Promote Complementarity in Coarse Wood Decomposition","authors":"Chao Guo, Bin Tuo, Sebastian Seibold, Hang Ci, Bi-Le Sai, Han-Tang Qin, En-Rong Yan, Johannes H. C. Cornelissen","doi":"10.1111/ele.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Complementary resource use by functionally different species may accelerate ecosystem processes. However, how co-variation in plant traits and animal traits promotes complementarity through temporal plant–animal interactions is poorly understood, even less so in detrital systems, thereby hampering our fundamental understanding of decomposition and carbon turnover. We hypothesised that, in seasonal subtropical forests where termites are major deadwood decomposers, trait complementarity of both termite species and tree species should promote overall deadwood decomposition through different seasons and years. Findings from a four-year coarse wood decomposition experiment involving 27 tree and 5 termite species support this hypothesis. Phenological and mandibular traits of the two most abundant termite species controlled wood decomposition of tree species differing in wood traits, through the seasons over 4 years, thereby promoting overall deadwood decomposition rates. Our findings indicate that complementarity in functional trait co-variation in plants and animals plays an important role in carbon cycling.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70002","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Complementary resource use by functionally different species may accelerate ecosystem processes. However, how co-variation in plant traits and animal traits promotes complementarity through temporal plant–animal interactions is poorly understood, even less so in detrital systems, thereby hampering our fundamental understanding of decomposition and carbon turnover. We hypothesised that, in seasonal subtropical forests where termites are major deadwood decomposers, trait complementarity of both termite species and tree species should promote overall deadwood decomposition through different seasons and years. Findings from a four-year coarse wood decomposition experiment involving 27 tree and 5 termite species support this hypothesis. Phenological and mandibular traits of the two most abundant termite species controlled wood decomposition of tree species differing in wood traits, through the seasons over 4 years, thereby promoting overall deadwood decomposition rates. Our findings indicate that complementarity in functional trait co-variation in plants and animals plays an important role in carbon cycling.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.