Estimating the Effective Size of European Wolf Populations

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2024-10-22 DOI:10.1111/eva.70021
Joachim Mergeay, Sander Smet, Sebastian Collet, Sabina Nowak, Ilka Reinhardt, Gesa Kluth, Maciej Szewczyk, Raquel Godinho, Carsten Nowak, Robert W. Mysłajek, Gregor Rolshausen
{"title":"Estimating the Effective Size of European Wolf Populations","authors":"Joachim Mergeay,&nbsp;Sander Smet,&nbsp;Sebastian Collet,&nbsp;Sabina Nowak,&nbsp;Ilka Reinhardt,&nbsp;Gesa Kluth,&nbsp;Maciej Szewczyk,&nbsp;Raquel Godinho,&nbsp;Carsten Nowak,&nbsp;Robert W. Mysłajek,&nbsp;Gregor Rolshausen","doi":"10.1111/eva.70021","DOIUrl":null,"url":null,"abstract":"<p>Molecular methods are routinely used to estimate the effective size of populations (<i>N</i><sub>e</sub>). However, underlying model assumptions are frequently violated to an unknown extent. Although simulations can detect sources of bias and help to adjust sampling strategies and analyses methods, additional information from empirical data can also be used to calibrate methods and improve molecular <i>N</i><sub>e</sub> estimation methods. Here, we take advantage of long-term genetic and ecological monitoring data of the grey wolf (<i>Canis lupus</i>) in Germany, and detailed population genetic studies in Poland, Spain and Portugal to improve <i>N</i><sub>e</sub> estimation strategies in this species, and species with similar life history traits. We first calculated <i>N</i><sub>e</sub> from average lifetime reproductive success and detailed census data from the German population, which served as a baseline to compare to molecular estimates based on linkage disequilibrium and sibship frequency. This yielded a robust <i>N</i><sub>e</sub>/<i>N</i><sub>c</sub> estimation that we used to calibrate molecular estimates of German, Polish and Iberian wolf populations. The linkage disequilibrium method was strongly influenced by spatial genetic structure, much more than the sibship frequency method. When <i>N</i><sub>e</sub> was estimated in local neighbourhoods, both methods yielded comparable results. Estimates of the metapopulation effective size seemed to correspond generally well with the sum of the estimates of local neighbourhoods. Overall, we found that the number of packs is a good proxy of the effective population size. Using this as a rule of thumb, we evaluated for all European wolf populations the <i>N</i><sub>e</sub> 500 indicator and concluded that half of the European wolf populations do not yet fulfil this criterion.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 10","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular methods are routinely used to estimate the effective size of populations (Ne). However, underlying model assumptions are frequently violated to an unknown extent. Although simulations can detect sources of bias and help to adjust sampling strategies and analyses methods, additional information from empirical data can also be used to calibrate methods and improve molecular Ne estimation methods. Here, we take advantage of long-term genetic and ecological monitoring data of the grey wolf (Canis lupus) in Germany, and detailed population genetic studies in Poland, Spain and Portugal to improve Ne estimation strategies in this species, and species with similar life history traits. We first calculated Ne from average lifetime reproductive success and detailed census data from the German population, which served as a baseline to compare to molecular estimates based on linkage disequilibrium and sibship frequency. This yielded a robust Ne/Nc estimation that we used to calibrate molecular estimates of German, Polish and Iberian wolf populations. The linkage disequilibrium method was strongly influenced by spatial genetic structure, much more than the sibship frequency method. When Ne was estimated in local neighbourhoods, both methods yielded comparable results. Estimates of the metapopulation effective size seemed to correspond generally well with the sum of the estimates of local neighbourhoods. Overall, we found that the number of packs is a good proxy of the effective population size. Using this as a rule of thumb, we evaluated for all European wolf populations the Ne 500 indicator and concluded that half of the European wolf populations do not yet fulfil this criterion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估算欧洲狼种群的有效规模。
分子方法通常用于估算种群的有效规模(N e)。然而,基本模型假设经常被违反,其程度不得而知。虽然模拟可以发现偏差来源并帮助调整采样策略和分析方法,但来自经验数据的额外信息也可用于校准方法和改进分子 N e 估算方法。在此,我们利用德国灰狼(Canis lupus)的长期遗传和生态监测数据,以及波兰、西班牙和葡萄牙的详细种群遗传研究,来改进该物种以及具有类似生活史特征的物种的N e估计策略。我们首先根据德国种群的平均终生繁殖成功率和详细的普查数据计算出 N e,并以此为基线与基于连锁不平衡和同胞关系频率的分子估计值进行比较。这样就得出了可靠的 N e/N c 估计值,我们用它来校准德国、波兰和伊比利亚狼种群的分子估计值。联系不平衡法受空间遗传结构的影响很大,远大于同胞兄弟关系频率法。当在局部邻域估算 N e 时,两种方法得出的结果不相上下。元种群有效规模的估计值似乎与局部邻域的估计值之和基本吻合。总的来说,我们发现狼群数量是有效种群数量的一个很好的代表。根据这一经验法则,我们对所有欧洲狼种群的 N e 500 指标进行了评估,得出的结论是,有一半的欧洲狼种群尚未达到这一标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Tracking the North American Asian Longhorned Beetle Invasion With Genomics Prioritizing Conservation Areas for the Hyacinth Macaw (Anodorhynchus hyacinthinus) in Brazil From Low-Coverage Genomic Data Genomic Data Support the Revision of Provenance Regions Delimitation for Scots Pine Sex Pheromone Mediates Resource Partitioning Between Drosophila melanogaster and D. suzukii Estimating Demographic Parameters for Bearded Seals, Erignathus barbatus, in Alaska Using Close-Kin Mark-Recapture Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1