The Arabidopsis PIP1;1 Aquaporin Represses Lateral Root Development and Nitrate Uptake Under Low Nitrate Availability.

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2024-10-27 DOI:10.1111/pce.15222
Thayssa Rabelo Schley, Ting Zhu, Birgit Geist, Amandine Crabos, Daniela Dietrich, Regina A Alandes, Malcolm Bennett, Philippe Nacry, Anton R Schäffner
{"title":"The Arabidopsis PIP1;1 Aquaporin Represses Lateral Root Development and Nitrate Uptake Under Low Nitrate Availability.","authors":"Thayssa Rabelo Schley, Ting Zhu, Birgit Geist, Amandine Crabos, Daniela Dietrich, Regina A Alandes, Malcolm Bennett, Philippe Nacry, Anton R Schäffner","doi":"10.1111/pce.15222","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrate (NO<sub>3</sub> <sup>-</sup>) deficiency decreases root water uptake and root hydraulic conductance. This adaptive response is correlated with reduced abundance and activity of plasma membrane intrinsic protein (PIP) aquaporins. We therefore screened changes in the root architecture of a complete set of Arabidopsis pip loss-of-function mutants grown under NO<sub>3</sub> <sup>-</sup> deficiency to systematically approach the impact of PIPs under these conditions. NO<sub>3</sub> <sup>-</sup> deprivation led to attenuated responses of specific pip single mutants compared to the strongly altered LR parameters of wild-type plants. In particular, pip1;1 exhibited a lower relative reduction in LR length and LR density, revealing that PIP1;1 represses LR development when NO<sub>3</sub> <sup>-</sup> is scarce. Indeed, PIP1;1 compromises root and shoot NO<sub>3</sub> <sup>-</sup> accumulation during early developmental stages. A fluorescent VENUS-PIP1;1 fusion revealed that PIP1;1 is specifically repressed in the pericycle, endodermis and at the flanks of emerging LRs upon NO<sub>3</sub> <sup>-</sup> deficiency. Thus, LR plasticity and NO<sub>3</sub> <sup>-</sup> uptake are affected by an interactive mechanism involving aquaporins (PIP1;1) and nitrate accumulation during seedling development under NO<sub>3</sub> <sup>-</sup>-deficient conditions.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15222","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrate (NO3 -) deficiency decreases root water uptake and root hydraulic conductance. This adaptive response is correlated with reduced abundance and activity of plasma membrane intrinsic protein (PIP) aquaporins. We therefore screened changes in the root architecture of a complete set of Arabidopsis pip loss-of-function mutants grown under NO3 - deficiency to systematically approach the impact of PIPs under these conditions. NO3 - deprivation led to attenuated responses of specific pip single mutants compared to the strongly altered LR parameters of wild-type plants. In particular, pip1;1 exhibited a lower relative reduction in LR length and LR density, revealing that PIP1;1 represses LR development when NO3 - is scarce. Indeed, PIP1;1 compromises root and shoot NO3 - accumulation during early developmental stages. A fluorescent VENUS-PIP1;1 fusion revealed that PIP1;1 is specifically repressed in the pericycle, endodermis and at the flanks of emerging LRs upon NO3 - deficiency. Thus, LR plasticity and NO3 - uptake are affected by an interactive mechanism involving aquaporins (PIP1;1) and nitrate accumulation during seedling development under NO3 --deficient conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟南芥 PIP1;1 水蒸气蛋白抑制低硝酸盐供应下的侧根发育和硝酸盐吸收
硝酸盐(NO3-)缺乏会降低根系的吸水能力和根系的水力传导。这种适应性反应与质膜固有蛋白(PIP)水蒸发蛋白的丰度和活性降低有关。因此,我们筛选了一整套在 NO3 缺乏条件下生长的拟南芥哌啶功能缺失突变体的根系结构变化,以系统地研究 PIPs 在这些条件下的影响。与野生型植株强烈改变的 LR 参数相比,NO3 缺乏导致特定 pip 单一突变体的反应减弱。特别是,pip1;1 的 LR 长度和 LR 密度相对减少较少,这表明当 NO3 缺乏时,PIP1;1 会抑制 LR 的发育。事实上,PIP1;1 在早期发育阶段会影响根和芽的 NO3 - 积累。荧光 VENUS-PIP1;1 融合显示,当 NO3 缺乏时,PIP1;1 在周皮、内皮和新生 LR 的侧面受到特异性抑制。因此,在 NO3 缺乏的条件下,幼苗发育过程中 LR 的可塑性和 NO3 吸收受到涉及水汽素(PIP1;1)和硝酸盐积累的相互作用机制的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Whole-Genome Identification of the Flax Fatty Acid Desaturase Gene Family and Functional Analysis of the LuFAD2.1 Gene Under Cold Stress Conditions. Metabolism Interaction Between Bacillus cereus SESY and Brassica napus Contributes to Enhance Host Selenium Absorption and Accumulation. Out on a Limb: Testing the Hydraulic Vulnerability Segmentation Hypothesis in Trees Across Multiple Ecosystems. Wheat Tae-MIR1118 Constitutes a Functional Module With Calmodulin TaCaM2-1 and MYB Member TaMYB44 to Modulate Plant Low-N Stress Response. Diurnal Rhythmicity in the Rhizosphere Microbiome-Mechanistic Insights and Significance for Rhizosphere Function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1