{"title":"Uncovering Integrated Dual-State ESIPT-Conductivity, Redox-Capacity, and Opto-Electronic Responses Toward Hg(II)/ Cr(III) of Aliphatic Fluorescent Polymers.","authors":"Md Hussain Sanfui, Nadira Hassan, Shrestha Roy, Deepak Chowdhury, Preetam Nandy, Mincheol Chang, Mostafizur Rahaman, Narendra Nath Ghosh, Swapan Majumdar, Pijush Kanti Chattopadhyay, Dilip K Maiti, Nayan Ranjan Singha","doi":"10.1002/marc.202400677","DOIUrl":null,"url":null,"abstract":"<p><p>Excited-state intramolecular proton transfer (ESIPT)-associated dual-state emissive aliphatic dual-light emitting conducting polymers (DLECPs) having oxidation-reduction capacities are prepared polymerizing 2-acrylamido-2-methylpropane-1-sulfonic acid, methacrylic acid, and 2-methyl-3-(N-(2-methyl-1-sulfopropan-2-yl)acrylamido)propanoic acid monomers. Of as-synthesized DLECPs, nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies, fluorescent enhancements (I/I<sub>0</sub>), and computational investigation indicate intriguing photophysical features in DLECP3 (optimum composition). In DLECP3, ─CONH─, ─CON<, and ─COOH subluminophores are recognized by density-functional theory (DFT)/time-dependent-DFT calculations and experimental investigations. ESIPT-associated dual-state emission/conductivity, aggregation-enhanced emissions, selective opto-electronic responses toward Hg(II)/Cr(III) at 437/574 nm, and redox properties of DLECP3 are supported by solid-state/solution spectroscopies, time-correlated single photon counting (TCSPC) measurements, dual-state excitation dependent emissions, microscopic images, electrochemical measurements, and DFT calculations. Here, preferential interaction of Hg(II)/Cr(III) with DLECP3 (amide)/DLECP3 (imidol) and reduction/oxidation of Hg(II)/Cr(III) to Hg(I)/Cr(VI) are substantiated by UV-vis, FTIR, and X-ray photoelectron spectroscopies; TCSPC measurements; NMR-titration; electrochemical studies; alongside computational calculations. The proton-electrical conductivities of DLECP3, Hg(II/I)-DLECP3, and Cr(III/VI)-DLECP3 in solids/solutions are 15.27 × 10<sup>-5</sup>/6.16 × 10<sup>-5</sup>, 19.60 × 10<sup>-5</sup>/25.52 × 10<sup>-5</sup>, and 26.69 × 10<sup>-5</sup>/27.60 × 10<sup>-5</sup> S cm<sup>-1</sup>, respectively.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400677","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Excited-state intramolecular proton transfer (ESIPT)-associated dual-state emissive aliphatic dual-light emitting conducting polymers (DLECPs) having oxidation-reduction capacities are prepared polymerizing 2-acrylamido-2-methylpropane-1-sulfonic acid, methacrylic acid, and 2-methyl-3-(N-(2-methyl-1-sulfopropan-2-yl)acrylamido)propanoic acid monomers. Of as-synthesized DLECPs, nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies, fluorescent enhancements (I/I0), and computational investigation indicate intriguing photophysical features in DLECP3 (optimum composition). In DLECP3, ─CONH─, ─CON<, and ─COOH subluminophores are recognized by density-functional theory (DFT)/time-dependent-DFT calculations and experimental investigations. ESIPT-associated dual-state emission/conductivity, aggregation-enhanced emissions, selective opto-electronic responses toward Hg(II)/Cr(III) at 437/574 nm, and redox properties of DLECP3 are supported by solid-state/solution spectroscopies, time-correlated single photon counting (TCSPC) measurements, dual-state excitation dependent emissions, microscopic images, electrochemical measurements, and DFT calculations. Here, preferential interaction of Hg(II)/Cr(III) with DLECP3 (amide)/DLECP3 (imidol) and reduction/oxidation of Hg(II)/Cr(III) to Hg(I)/Cr(VI) are substantiated by UV-vis, FTIR, and X-ray photoelectron spectroscopies; TCSPC measurements; NMR-titration; electrochemical studies; alongside computational calculations. The proton-electrical conductivities of DLECP3, Hg(II/I)-DLECP3, and Cr(III/VI)-DLECP3 in solids/solutions are 15.27 × 10-5/6.16 × 10-5, 19.60 × 10-5/25.52 × 10-5, and 26.69 × 10-5/27.60 × 10-5 S cm-1, respectively.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.