Primary productivity regulates rhizosphere soil organic carbon: Evidence from a chronosequence of subtropical Chinese fir (Cunninghamia lanceolata) plantation.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-12-10 Epub Date: 2024-10-23 DOI:10.1016/j.scitotenv.2024.177082
Xiangbiao Chen, Shidong Chen, Mary A Arthur, Rebecca L McCulley, Xiaofei Liu, Decheng Xiong, Chao Xu, Zhijie Yang, Yusheng Yang
{"title":"Primary productivity regulates rhizosphere soil organic carbon: Evidence from a chronosequence of subtropical Chinese fir (Cunninghamia lanceolata) plantation.","authors":"Xiangbiao Chen, Shidong Chen, Mary A Arthur, Rebecca L McCulley, Xiaofei Liu, Decheng Xiong, Chao Xu, Zhijie Yang, Yusheng Yang","doi":"10.1016/j.scitotenv.2024.177082","DOIUrl":null,"url":null,"abstract":"<p><p>Tree plantations worldwide are a large terrestrial carbon sink. Previous studies on the carbon sequestration capacity of plantations mainly focused on tree biomass carbon sequestration, but the importance of soil organic carbon (SOC) was relatively unclear. Living root carbon inputs influence SOC via plant-microbe interactions in the rhizosphere and play an essential role in nutrient cycling. Here, we compared SOC, including its fractions, microbial properties, and major nutrients in rhizosphere and bulk soils, and examined their relationships to net primary productivity (NPP) across three developmental stages of Chinese fir (Cunninghamia lanceolata) plantations (6, 18, and 42 years old) in subtropical China. Although NPP differed among the three plantations, SOC concentration in bulk soils did not vary significantly among them. However, SOC concentration and labile C pool I and recalcitrant C pool in rhizosphere soils were significantly (p < 0.05) higher in the young (6-year) and mature (42-year) plantations, both of which had lower (p < 0.05) NPP (-37.71 % and - 42.67 %) compared to the middle-aged (18-year) plantation, suggesting a decoupling of NPP from rhizosphere SOC in the plantations. The decoupling of NPP from rhizosphere SOC concentrations may be driven by nitrogen (N) and phosphorus (P) tree growth requirements, belowground C allocation, and resultant microbial activity in this highly weathered subtropical soil. Our study provides field-based evidence suggesting that rhizosphere SOC changes are primarily regulated by net primary production in subtropical forest plantations. We propose that accurate predictions of SOC dynamics in forest plantations require an improved understanding of rhizosphere processes during plantation development.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177082"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177082","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tree plantations worldwide are a large terrestrial carbon sink. Previous studies on the carbon sequestration capacity of plantations mainly focused on tree biomass carbon sequestration, but the importance of soil organic carbon (SOC) was relatively unclear. Living root carbon inputs influence SOC via plant-microbe interactions in the rhizosphere and play an essential role in nutrient cycling. Here, we compared SOC, including its fractions, microbial properties, and major nutrients in rhizosphere and bulk soils, and examined their relationships to net primary productivity (NPP) across three developmental stages of Chinese fir (Cunninghamia lanceolata) plantations (6, 18, and 42 years old) in subtropical China. Although NPP differed among the three plantations, SOC concentration in bulk soils did not vary significantly among them. However, SOC concentration and labile C pool I and recalcitrant C pool in rhizosphere soils were significantly (p < 0.05) higher in the young (6-year) and mature (42-year) plantations, both of which had lower (p < 0.05) NPP (-37.71 % and - 42.67 %) compared to the middle-aged (18-year) plantation, suggesting a decoupling of NPP from rhizosphere SOC in the plantations. The decoupling of NPP from rhizosphere SOC concentrations may be driven by nitrogen (N) and phosphorus (P) tree growth requirements, belowground C allocation, and resultant microbial activity in this highly weathered subtropical soil. Our study provides field-based evidence suggesting that rhizosphere SOC changes are primarily regulated by net primary production in subtropical forest plantations. We propose that accurate predictions of SOC dynamics in forest plantations require an improved understanding of rhizosphere processes during plantation development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
初级生产力对根瘤土壤有机碳的调节:亚热带冷杉(Cunninghamia lanceolata)种植园年代序列的证据。
全世界的人工林都是一个巨大的陆地碳汇。以往对人工林固碳能力的研究主要集中在树木生物量固碳方面,但对土壤有机碳(SOC)的重要性却相对不清楚。活根碳输入通过根圈中植物与微生物的相互作用影响土壤有机碳,并在养分循环中发挥重要作用。在此,我们比较了中国亚热带地区冷杉(Cunninghamia lanceolata)种植园三个生长阶段(6 年、18 年和 42 年)根瘤菌圈和块状土壤中的 SOC,包括其组分、微生物特性和主要养分,并研究了它们与净初级生产力(NPP)的关系。虽然三个种植园的 NPP 存在差异,但大体积土壤中的 SOC 浓度并无明显变化。然而,根瘤土壤中的 SOC 浓度、易腐性 C 池 I 和难腐性 C 池均有显著差异(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Spatial multi-criteria approaches for estimating geogenic radon hazard index. Exploring changes in epibenthic food web structure after implementation of a water-sediment regulation scheme. Exposure to microplastics contaminated with pharmaceuticals and personal care products: Histological effects on Ucides cordatus. Microbial necromass in soil profiles increases less efficiently than root biomass in long-term fenced grassland: Effects of microbial nitrogen limitation and soil depth. Trophic organization of the benthic communities off the South Italian coasts: A review with a modelistic approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1