Structural and dynamical insights revealed the anti-glioblastoma potential of withanolides from Withania coagulans against vascular endothelial growth factor receptor (VEGFR)
{"title":"Structural and dynamical insights revealed the anti-glioblastoma potential of withanolides from Withania coagulans against vascular endothelial growth factor receptor (VEGFR)","authors":"Khair Bux, Irsa Asim, Zainab Ismail, Samaha Hussain, Ralf Herwig","doi":"10.1007/s00894-024-06178-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Glioblastoma (GBM), well known as grade 4 tumors due to its progressive malignant features such as vascular proliferation and necrosis, is the most aggressive form of primary brain tumor found in adults. Mutations and amplifications in the vascular endothelial growth factor receptor (VEGFR) contribute to almost 25% of GBM tumors. And thus, VEGFR has been declared the primary target in glioblastoma therapeutic strategies. However, many studies have been previously reported that include GBM as global therapeutics challenge, but they lack the molecular level insights that could help in understanding the biological function of a therapeutically important protein playing a major role in the disease and design the best strategies to develop the potential drugs.</p><h3>Methods</h3><p>Therefore, to the best of our knowledge, the present study is the first time of kind, which involves multi-in silico approaches to predict the inhibition potential of withanolides from <i>Withania coagulan</i> against VEGFR. The study is actually based on determining the mode of action of five isolates: withanolide J, withaperuvin, 27-hydroxywithanolide I, coagule E, and coagule E, along with their respective binding energies. Molecular docking simulations revealed primarily four ligands, withanolide J (− 7.33 kJ/mol), 27-withanolide (− 7.01 kJ/mol), ajugine, withaperuvin (− 6.89 kJ/mol), and ajugine E (− 6.39 kJ/mol), to have significant binding potencies against the protein. Ligand binding was found to enhance the confirmational stability of the protein revealed through RMSD analysis, and RMSF assessment revealed the protein residues especially from 900–1000 surrounding the binding of the protein. Structural and dynamics of the protein via dynamics cross-correlation movement (DCCM) and principal component analysis (PCA) in both the unbound form and complexed with most potent ligand, withanolide J, reveal the ligand binding affecting the entire conformational integrity of the protein stabilized by hydrogen bonds and electrostatic attractions. Free energy of binding estimations by means of molecular mechanics Poisson-Boltzmann surface area (MMPBSA) method further revealed the withanolide J to have maximum binding potency of the all ligands. Withanolide J in final was also found to have suitable molecular characterizations to cross the blood–brain barrier (BBB +) and reasonable human intestinal absorption ability determined by ADMET profiling via admetSAR tools.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06178-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Glioblastoma (GBM), well known as grade 4 tumors due to its progressive malignant features such as vascular proliferation and necrosis, is the most aggressive form of primary brain tumor found in adults. Mutations and amplifications in the vascular endothelial growth factor receptor (VEGFR) contribute to almost 25% of GBM tumors. And thus, VEGFR has been declared the primary target in glioblastoma therapeutic strategies. However, many studies have been previously reported that include GBM as global therapeutics challenge, but they lack the molecular level insights that could help in understanding the biological function of a therapeutically important protein playing a major role in the disease and design the best strategies to develop the potential drugs.
Methods
Therefore, to the best of our knowledge, the present study is the first time of kind, which involves multi-in silico approaches to predict the inhibition potential of withanolides from Withania coagulan against VEGFR. The study is actually based on determining the mode of action of five isolates: withanolide J, withaperuvin, 27-hydroxywithanolide I, coagule E, and coagule E, along with their respective binding energies. Molecular docking simulations revealed primarily four ligands, withanolide J (− 7.33 kJ/mol), 27-withanolide (− 7.01 kJ/mol), ajugine, withaperuvin (− 6.89 kJ/mol), and ajugine E (− 6.39 kJ/mol), to have significant binding potencies against the protein. Ligand binding was found to enhance the confirmational stability of the protein revealed through RMSD analysis, and RMSF assessment revealed the protein residues especially from 900–1000 surrounding the binding of the protein. Structural and dynamics of the protein via dynamics cross-correlation movement (DCCM) and principal component analysis (PCA) in both the unbound form and complexed with most potent ligand, withanolide J, reveal the ligand binding affecting the entire conformational integrity of the protein stabilized by hydrogen bonds and electrostatic attractions. Free energy of binding estimations by means of molecular mechanics Poisson-Boltzmann surface area (MMPBSA) method further revealed the withanolide J to have maximum binding potency of the all ligands. Withanolide J in final was also found to have suitable molecular characterizations to cross the blood–brain barrier (BBB +) and reasonable human intestinal absorption ability determined by ADMET profiling via admetSAR tools.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.