The Application of a Random Forest Classifier to ToF-SIMS Imaging Data.

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of the American Society for Mass Spectrometry Pub Date : 2024-12-04 Epub Date: 2024-10-25 DOI:10.1021/jasms.4c00324
Mariya A Shamraeva, Theodoros Visvikis, Stefanos Zoidis, Ian G M Anthony, Sebastiaan Van Nuffel
{"title":"The Application of a Random Forest Classifier to ToF-SIMS Imaging Data.","authors":"Mariya A Shamraeva, Theodoros Visvikis, Stefanos Zoidis, Ian G M Anthony, Sebastiaan Van Nuffel","doi":"10.1021/jasms.4c00324","DOIUrl":null,"url":null,"abstract":"<p><p>Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is a potent analytical tool that provides spatially resolved chemical information on surfaces at the microscale. However, the hyperspectral nature of ToF-SIMS datasets can be challenging to analyze and interpret. Both supervised and unsupervised machine learning (ML) approaches are increasingly useful to help analyze ToF-SIMS data. Random Forest (RF) has emerged as a robust and powerful algorithm for processing mass spectrometry data. This machine learning approach offers several advantages, including accommodating nonlinear relationships, robustness to outliers in the data, managing the high-dimensional feature space, and mitigating the risk of overfitting. The application of RF to ToF-SIMS imaging facilitates the classification of complex chemical compositions and the identification of features contributing to these classifications. This tutorial aims to assist nonexperts in either machine learning or ToF-SIMS to apply Random Forest to complex ToF-SIMS datasets.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"2801-2814"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622239/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00324","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is a potent analytical tool that provides spatially resolved chemical information on surfaces at the microscale. However, the hyperspectral nature of ToF-SIMS datasets can be challenging to analyze and interpret. Both supervised and unsupervised machine learning (ML) approaches are increasingly useful to help analyze ToF-SIMS data. Random Forest (RF) has emerged as a robust and powerful algorithm for processing mass spectrometry data. This machine learning approach offers several advantages, including accommodating nonlinear relationships, robustness to outliers in the data, managing the high-dimensional feature space, and mitigating the risk of overfitting. The application of RF to ToF-SIMS imaging facilitates the classification of complex chemical compositions and the identification of features contributing to these classifications. This tutorial aims to assist nonexperts in either machine learning or ToF-SIMS to apply Random Forest to complex ToF-SIMS datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将随机森林分类器应用于 ToF-SIMS 成像数据。
飞行时间二次离子质谱(ToF-SIMS)成像是一种有效的分析工具,可在微观尺度上提供空间分辨的表面化学信息。然而,ToF-SIMS 数据集的高光谱特性给分析和解释带来了挑战。有监督和无监督机器学习(ML)方法越来越有助于分析 ToF-SIMS 数据。随机森林(RF)已成为处理质谱数据的强大算法。这种机器学习方法具有多种优势,包括适应非线性关系、对数据中异常值的稳健性、管理高维特征空间以及降低过拟合风险。将 RF 应用于 ToF-SIMS 成像有助于对复杂的化学成分进行分类,并识别有助于这些分类的特征。本教程旨在帮助非机器学习或 ToF-SIMS 专家将随机森林应用于复杂的 ToF-SIMS 数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
期刊最新文献
Machine Learning Correlation of Electron Micrographs and ToF-SIMS for the Analysis of Organic Biomarkers in Mudstone. Predicting Precursor Ions Combined with Fragmentation Pathway for Screening and Identification of Flavan-3-ol Oligomers in Tea (Camellia sinensis. var. assamica). Interpolation of Imaging Mass Spectrometry Data by a Window-Based Adversarial Autoencoder Method. MS SIEVE-Pushing the Limits for Biomolecular Mass Spectrometry. Photochemical and Collision-Induced Cross-Linking of Lys, Arg, and His to Nitrile Imines in Peptide Conjugate Ions in the Gas Phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1