Macrocyclic Rearrangement Ion Fragmentation of Glutathione Conjugates of Cyclobutane-Containing Covalent BTK Inhibitors.

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of the American Society for Mass Spectrometry Pub Date : 2025-03-17 DOI:10.1021/jasms.4c00275
Cathy A Muste, Chungang Gu, H George Vandeveer, Simone Sciabola, Martin K Himmelbauer
{"title":"Macrocyclic Rearrangement Ion Fragmentation of Glutathione Conjugates of Cyclobutane-Containing Covalent BTK Inhibitors.","authors":"Cathy A Muste, Chungang Gu, H George Vandeveer, Simone Sciabola, Martin K Himmelbauer","doi":"10.1021/jasms.4c00275","DOIUrl":null,"url":null,"abstract":"<p><p>Covalent BTK-inhibitor drugs often contain reactive acrylamide warheads designed to irreversibly bind to their protein targets at free thiol cysteines in the kinase active site. This reactivity also makes covalent inhibitors susceptible to conjugation to endogenous tripeptide glutathione (GSH), leading to clearance. During lead optimization efforts for the drug discovery of covalent BTK inhibitor BIIB129, some expected GSH adducts resulted in an unexpected and highly abundant rearrangement fragment ion in LC-MS/MS. By examining more than 30 inhibitors, the rearrangements were found to be dependent on the presence of a cycloalkane linker that connects the warhead to the kinase hinge binder motif of drug molecules. The proposed mechanism includes the formation of a 16-membered macrocyclic intermediate between the γ-glutamic acid residue (Glu) of GSH and a methyl-cyclobutyl cation, resulting in a rearrangement fragment originating from two distant parts of the adduct molecule separated by the warhead conjugated with the cysteine residue in between. Rich sets of chemical analogues available during the lead optimization enabled confirmation of the macrocyclic rearrangement. Proposed macrocyclic rearrangement was verified using GSH derivatives: N-acetylation of the γ-Glu blocked the rearrangement, and esterification of the γ-Glu side chain resulted in an expected shift in the mass of rearranged fragment ion. Proposed rearranged ion structures were supported by MS<sup>3</sup> and MS<sup>4</sup> fragmentations. Comparisons of the ion fragmentation of GSH conjugates between <i>cis</i> and <i>trans</i> matched pairs suggest a concerted mechanism for the cyclobutane linker and a stepwise mechanism for the methylcyclobutane linker, respectively.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00275","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent BTK-inhibitor drugs often contain reactive acrylamide warheads designed to irreversibly bind to their protein targets at free thiol cysteines in the kinase active site. This reactivity also makes covalent inhibitors susceptible to conjugation to endogenous tripeptide glutathione (GSH), leading to clearance. During lead optimization efforts for the drug discovery of covalent BTK inhibitor BIIB129, some expected GSH adducts resulted in an unexpected and highly abundant rearrangement fragment ion in LC-MS/MS. By examining more than 30 inhibitors, the rearrangements were found to be dependent on the presence of a cycloalkane linker that connects the warhead to the kinase hinge binder motif of drug molecules. The proposed mechanism includes the formation of a 16-membered macrocyclic intermediate between the γ-glutamic acid residue (Glu) of GSH and a methyl-cyclobutyl cation, resulting in a rearrangement fragment originating from two distant parts of the adduct molecule separated by the warhead conjugated with the cysteine residue in between. Rich sets of chemical analogues available during the lead optimization enabled confirmation of the macrocyclic rearrangement. Proposed macrocyclic rearrangement was verified using GSH derivatives: N-acetylation of the γ-Glu blocked the rearrangement, and esterification of the γ-Glu side chain resulted in an expected shift in the mass of rearranged fragment ion. Proposed rearranged ion structures were supported by MS3 and MS4 fragmentations. Comparisons of the ion fragmentation of GSH conjugates between cis and trans matched pairs suggest a concerted mechanism for the cyclobutane linker and a stepwise mechanism for the methylcyclobutane linker, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
期刊最新文献
Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) Mass Spectrometry Imaging of Per- and Polyfluoroalkyl Substances (PFAS) in Stabilized Soil Cores. Macrocyclic Rearrangement Ion Fragmentation of Glutathione Conjugates of Cyclobutane-Containing Covalent BTK Inhibitors. Kinetic Method Coupled with Thermal-Assisted Paper Spray Ionization Mass Spectrometry for Direct Determination of Enantiomeric Excess of Multiple d/l-Amino Acids in Functional Foods. Spatial Distribution of Brain PET Tracers by MALDI Imaging. Characterizing Monoclonal Antibody Aggregation Using Charge Detection Mass Spectrometry and Industry Standard Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1