Seung Yeon Lee, Jeong Min Park, Won-Kyu Rhim, Eun Hye Lee, Sang-Hyuk Lee, Jun Yong Kim, Seung-Gyu Cha, Sun Hong Lee, Boram Kim, Dong-Youn Hwang, Seungsoo Rho, Tae-Keun Ahn, Bum Soo Kim, Dong Keun Han
{"title":"Multifunctional extracellular vesicles and edaravone-loaded scaffolds for kidney tissue regeneration by activating GDNF/RET pathway","authors":"Seung Yeon Lee, Jeong Min Park, Won-Kyu Rhim, Eun Hye Lee, Sang-Hyuk Lee, Jun Yong Kim, Seung-Gyu Cha, Sun Hong Lee, Boram Kim, Dong-Youn Hwang, Seungsoo Rho, Tae-Keun Ahn, Bum Soo Kim, Dong Keun Han","doi":"10.1186/s40580-024-00450-5","DOIUrl":null,"url":null,"abstract":"<div><p>With the severity of chronic kidney disease worldwide, strategies to recover renal function via tissue regeneration provide alternatives to kidney replacement therapy. To exclude side effects from direct cell transplantation, extracellular vesicles (EVs) are great substitutes representing paracrine cell signaling. To build three-dimensional structures for implantation into the 5/6 nephrectomy model by incorporating bioactive materials, including multifunctional EVs (mEVs), porous PMEZE/mEV scaffolds were developed in combination with edaravone (EDV; E) and mEV based on PMEZ scaffolds with PLGA (P), MH-RA (M), ECM (E), ZnO-ALA (Z). The oxygen free radical scavenger EDV was incorporated to induce tubular regeneration. mEVs were engineered to serve regenerative activities with a combination of two EVs from SDF-1α overexpressed tonsil-derived mesenchymal stem cells (sEVs) and intermediate mesoderm (IM) cells during differentiation into kidney progenitor cells (dEVs). mEVs displayed beneficial effects on regeneration by facilitating migration and inducing differentiation of surrounding stem cells, and EDV improved kidney function by regulating the GDNF/RET pathway and their downstream genes. The promotion of MSC recruitment was confirmed with sEV particles number dependently, and the regulation of the GDNF/RET pathway by the effect of EDV and its enhanced effect by mEVs were elucidated using in vitro analysis. The regeneration of tubules was additionally demonstrated through the increased expression of aquaporin-1 (AQP-1) and cadherin-16 (CDH16) for proximal tubules, and calbindin and PAX2 for distal tubules in the renal defect model. With these, structural regeneration and functional recovery were achieved with kidney regeneration in the 5/6 nephrectomy mice model.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00450-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00450-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the severity of chronic kidney disease worldwide, strategies to recover renal function via tissue regeneration provide alternatives to kidney replacement therapy. To exclude side effects from direct cell transplantation, extracellular vesicles (EVs) are great substitutes representing paracrine cell signaling. To build three-dimensional structures for implantation into the 5/6 nephrectomy model by incorporating bioactive materials, including multifunctional EVs (mEVs), porous PMEZE/mEV scaffolds were developed in combination with edaravone (EDV; E) and mEV based on PMEZ scaffolds with PLGA (P), MH-RA (M), ECM (E), ZnO-ALA (Z). The oxygen free radical scavenger EDV was incorporated to induce tubular regeneration. mEVs were engineered to serve regenerative activities with a combination of two EVs from SDF-1α overexpressed tonsil-derived mesenchymal stem cells (sEVs) and intermediate mesoderm (IM) cells during differentiation into kidney progenitor cells (dEVs). mEVs displayed beneficial effects on regeneration by facilitating migration and inducing differentiation of surrounding stem cells, and EDV improved kidney function by regulating the GDNF/RET pathway and their downstream genes. The promotion of MSC recruitment was confirmed with sEV particles number dependently, and the regulation of the GDNF/RET pathway by the effect of EDV and its enhanced effect by mEVs were elucidated using in vitro analysis. The regeneration of tubules was additionally demonstrated through the increased expression of aquaporin-1 (AQP-1) and cadherin-16 (CDH16) for proximal tubules, and calbindin and PAX2 for distal tubules in the renal defect model. With these, structural regeneration and functional recovery were achieved with kidney regeneration in the 5/6 nephrectomy mice model.
期刊介绍:
Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects.
Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.