Barbara Summers, Kihwan Kim, Anjali Trivedi, Tyler M Lu, Sean Houghton, Jade Palmer-Johnson, Joselyn Rojas Quintero, Juan Cala-Garcia, Tania Pannellini, Francesca Polverino, Raphaël Lis, Hasina Outtz Reed
{"title":"Mice with Lymphatic Dysfunction Develop Pathogenic Lung Tertiary Lymphoid Organs that Model an Autoimmune Emphysema Phenotype of COPD.","authors":"Barbara Summers, Kihwan Kim, Anjali Trivedi, Tyler M Lu, Sean Houghton, Jade Palmer-Johnson, Joselyn Rojas Quintero, Juan Cala-Garcia, Tania Pannellini, Francesca Polverino, Raphaël Lis, Hasina Outtz Reed","doi":"10.1152/ajplung.00209.2024","DOIUrl":null,"url":null,"abstract":"<p><p>We have previously shown that mice with loss of C-type lectin-like type II (CLEC2), which have lymphatic dysfunction due to the role of CLEC2 in platelets for maintaining separation between the venous and lymphatic system, develop lung tertiary lymphoid organ (TLO) formation and lung injury that resembles an emphysema phenotype of chronic obstructive pulmonary disease (COPD). We now sought to investigate whether and how TLOs in these mice may play a pathogenic role in lung injury that is relevant to human disease. We found that inhibiting TLO formation using an anti-CD20 antibody in CLEC2-deficient mice partially blocked the development of emphysema. TLOs in CLEC2-deficient mice were rich in plasma cells and were a source of a broad array of autoantibodies. Chronic cigarette smoke exposure increased the size and number of lung TLOs in CLEC2-deficient mice, and was associated with increased markers of antigen presentation and maturation, leading to increased autoantibody deposition. Using lung tissue from COPD patients, we found an increase in lymphatic markers in patients with an emphysema phenotype and autoreactive TLOs compared to COPD patients without emphysema that lack prominent TLOs. Taken together, these results demonstrate that emphysema in mice with lymphatic dysfunction can be partially rescued by blocking TLO formation, and that these TLOs are source of autoantibodies that are exacerbated by cigarette smoke. Our work suggests that lymphatic dysfunction in mice may recapitulate some aspects an autoimmune emphysema phenotype that is seen in a subset of patients with COPD.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00209.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We have previously shown that mice with loss of C-type lectin-like type II (CLEC2), which have lymphatic dysfunction due to the role of CLEC2 in platelets for maintaining separation between the venous and lymphatic system, develop lung tertiary lymphoid organ (TLO) formation and lung injury that resembles an emphysema phenotype of chronic obstructive pulmonary disease (COPD). We now sought to investigate whether and how TLOs in these mice may play a pathogenic role in lung injury that is relevant to human disease. We found that inhibiting TLO formation using an anti-CD20 antibody in CLEC2-deficient mice partially blocked the development of emphysema. TLOs in CLEC2-deficient mice were rich in plasma cells and were a source of a broad array of autoantibodies. Chronic cigarette smoke exposure increased the size and number of lung TLOs in CLEC2-deficient mice, and was associated with increased markers of antigen presentation and maturation, leading to increased autoantibody deposition. Using lung tissue from COPD patients, we found an increase in lymphatic markers in patients with an emphysema phenotype and autoreactive TLOs compared to COPD patients without emphysema that lack prominent TLOs. Taken together, these results demonstrate that emphysema in mice with lymphatic dysfunction can be partially rescued by blocking TLO formation, and that these TLOs are source of autoantibodies that are exacerbated by cigarette smoke. Our work suggests that lymphatic dysfunction in mice may recapitulate some aspects an autoimmune emphysema phenotype that is seen in a subset of patients with COPD.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.