Engineered hydrogel biomaterials facilitate lung progenitor cell differentiation from induced pluripotent stem cells.

Alicia E Tanneberger, Rachel Blomberg, Ganna Bilousova, Amy L Ryan, Chelsea M Magin
{"title":"Engineered hydrogel biomaterials facilitate lung progenitor cell differentiation from induced pluripotent stem cells.","authors":"Alicia E Tanneberger, Rachel Blomberg, Ganna Bilousova, Amy L Ryan, Chelsea M Magin","doi":"10.1152/ajplung.00419.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Lung progenitor (LP) cells identified by the expression of transcription factor NK2 homeobox 1 (NKX2.1) are essential for development of all lung epithelial cell types and hold tremendous potential for pulmonary research and translational regenerative medicine applications. Here we present engineered hydrogels as a promising alternative to the naturally derived materials that are often used to differentiate human induced pluripotent stem cells (iPSCs) into LP cells. Poly(ethylene glycol) norbornene (PEGNB) hydrogels with defined composition were used to systematically investigate the role of microenvironmental stiffness, cell origin, and splitting during the differentiation process. Results demonstrated each factor impacted LP differentiation efficiency and that the soft hydrogels replicating healthy lung stiffness (Elastic modulus (E), E = 4.00 ± 0.25 kPa) produced the highest proportion of LP cells based on flow cytometric analysis results (54%) relative to the stiff hydrogels (48%) and Matrigel controls (32%) at the end of the non-split differentiation protocol. Collectively these results showed that engineered hydrogels provide a well-defined microenvironment for iPSC-to-LP differentiation and perform as effectively as the current gold standard Matrigel-coated tissue culture plastic. Adopting engineered biomaterials in cell culture protocols may enable greater control over differentiation parameters and has the potential to enhance the clinical translation of iPSC-derived LP cells.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00419.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lung progenitor (LP) cells identified by the expression of transcription factor NK2 homeobox 1 (NKX2.1) are essential for development of all lung epithelial cell types and hold tremendous potential for pulmonary research and translational regenerative medicine applications. Here we present engineered hydrogels as a promising alternative to the naturally derived materials that are often used to differentiate human induced pluripotent stem cells (iPSCs) into LP cells. Poly(ethylene glycol) norbornene (PEGNB) hydrogels with defined composition were used to systematically investigate the role of microenvironmental stiffness, cell origin, and splitting during the differentiation process. Results demonstrated each factor impacted LP differentiation efficiency and that the soft hydrogels replicating healthy lung stiffness (Elastic modulus (E), E = 4.00 ± 0.25 kPa) produced the highest proportion of LP cells based on flow cytometric analysis results (54%) relative to the stiff hydrogels (48%) and Matrigel controls (32%) at the end of the non-split differentiation protocol. Collectively these results showed that engineered hydrogels provide a well-defined microenvironment for iPSC-to-LP differentiation and perform as effectively as the current gold standard Matrigel-coated tissue culture plastic. Adopting engineered biomaterials in cell culture protocols may enable greater control over differentiation parameters and has the potential to enhance the clinical translation of iPSC-derived LP cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
期刊最新文献
Evidence of sex differences in ozone-induced oxysterol and cytokine levels in differentiated human nasal epithelial cells. mTOR signaling regulates multiple metabolic pathways in human lung fibroblasts after TGF-β and in pulmonary fibrosis. Engineered hydrogel biomaterials facilitate lung progenitor cell differentiation from induced pluripotent stem cells. The Circulating Renin-Angiotensin System and Mortality among Patients Hospitalized for COVID-19: A Mechanistic Substudy of the ACTIV-4 Host Tissue Trials. Distinct single cell transcriptional profile in CD4+ T-lymphocytes among obese children with asthma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1