Maternal alcohol consumption up to mouse organogenesis disrupts fetal-placental interface at mid-gestation associated with dysregulation of AQP3 immunoexpression
{"title":"Maternal alcohol consumption up to mouse organogenesis disrupts fetal-placental interface at mid-gestation associated with dysregulation of AQP3 immunoexpression","authors":"Camila Barril , Gisela Soledad Gualdoni , Alicia E. Damiano , Elisa Cebral","doi":"10.1016/j.bbrc.2024.150875","DOIUrl":null,"url":null,"abstract":"<div><div>Adequate trophoblast development during placentation involves the AQP3 regulation. The link between potential placental fetal-maternal interface abnormalities and AQP3 expression after perigestational alcohol intake was not explored yet. Female mice were treated (TF) with 10 % ethanol in drinking water before and up to day 10 of gestation, and control females (CF) with ethanol-free water. At gestational day 13, TFs showed increased fetal/placental weight ratio and reduced histological placental thickness compared to CFs. TF-placentas had disorganized fetal face layers, increased junctional zone (JZ), and decreased labyrinth (Lab). Concomitantly, immunoexpression of cleaved caspase-3 significantly increased in TF-JZ and Lab vs controls. Consistent with placental changes, AQP3 expression was higher in junctional trophoblast giant cells (TGCs), glycogen cells (GCs), spongiotrophoblasts (spg), and lab-syncytiotrophoblasts compared to CF-placentas. This study reveals, for the first time, that perigestational alcohol consumption up to organogenesis causes abnormal placental development associated with dysregulation of AQP3 expression.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24014116","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adequate trophoblast development during placentation involves the AQP3 regulation. The link between potential placental fetal-maternal interface abnormalities and AQP3 expression after perigestational alcohol intake was not explored yet. Female mice were treated (TF) with 10 % ethanol in drinking water before and up to day 10 of gestation, and control females (CF) with ethanol-free water. At gestational day 13, TFs showed increased fetal/placental weight ratio and reduced histological placental thickness compared to CFs. TF-placentas had disorganized fetal face layers, increased junctional zone (JZ), and decreased labyrinth (Lab). Concomitantly, immunoexpression of cleaved caspase-3 significantly increased in TF-JZ and Lab vs controls. Consistent with placental changes, AQP3 expression was higher in junctional trophoblast giant cells (TGCs), glycogen cells (GCs), spongiotrophoblasts (spg), and lab-syncytiotrophoblasts compared to CF-placentas. This study reveals, for the first time, that perigestational alcohol consumption up to organogenesis causes abnormal placental development associated with dysregulation of AQP3 expression.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics