{"title":"An Edge-Enhanced Network for Polyp Segmentation.","authors":"Yao Tong, Ziqi Chen, Zuojian Zhou, Yun Hu, Xin Li, Xuebin Qiao","doi":"10.3390/bioengineering11100959","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer remains a leading cause of cancer-related deaths worldwide, with early detection and removal of polyps being critical in preventing disease progression. Automated polyp segmentation, particularly in colonoscopy images, is a challenging task due to the variability in polyp appearance and the low contrast between polyps and surrounding tissues. In this work, we propose an edge-enhanced network (EENet) designed to address these challenges by integrating two novel modules: the covariance edge-enhanced attention (CEEA) and cross-scale edge enhancement (CSEE) modules. The CEEA module leverages covariance-based attention to enhance boundary detection, while the CSEE module bridges multi-scale features to preserve fine-grained edge details. To further improve the accuracy of polyp segmentation, we introduce a hybrid loss function that combines cross-entropy loss with edge-aware loss. Extensive experiments show that the EENet achieves a Dice score of 0.9208 and an IoU of 0.8664 on the Kvasir-SEG dataset, surpassing state-of-the-art models such as Polyp-PVT and PraNet. Furthermore, it records a Dice score of 0.9316 and an IoU of 0.8817 on the CVC-ClinicDB dataset, demonstrating its strong potential for clinical application in polyp segmentation. Ablation studies further validate the contribution of the CEEA and CSEE modules.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504364/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11100959","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer remains a leading cause of cancer-related deaths worldwide, with early detection and removal of polyps being critical in preventing disease progression. Automated polyp segmentation, particularly in colonoscopy images, is a challenging task due to the variability in polyp appearance and the low contrast between polyps and surrounding tissues. In this work, we propose an edge-enhanced network (EENet) designed to address these challenges by integrating two novel modules: the covariance edge-enhanced attention (CEEA) and cross-scale edge enhancement (CSEE) modules. The CEEA module leverages covariance-based attention to enhance boundary detection, while the CSEE module bridges multi-scale features to preserve fine-grained edge details. To further improve the accuracy of polyp segmentation, we introduce a hybrid loss function that combines cross-entropy loss with edge-aware loss. Extensive experiments show that the EENet achieves a Dice score of 0.9208 and an IoU of 0.8664 on the Kvasir-SEG dataset, surpassing state-of-the-art models such as Polyp-PVT and PraNet. Furthermore, it records a Dice score of 0.9316 and an IoU of 0.8817 on the CVC-ClinicDB dataset, demonstrating its strong potential for clinical application in polyp segmentation. Ablation studies further validate the contribution of the CEEA and CSEE modules.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering