Anomaly Detection in Embryo Development and Morphology Using Medical Computer Vision-Aided Swin Transformer with Boosted Dipper-Throated Optimization Algorithm.
Alanoud Al Mazroa, Mashael Maashi, Yahia Said, Mohammed Maray, Ahmad A Alzahrani, Abdulwhab Alkharashi, Ali M Al-Sharafi
{"title":"Anomaly Detection in Embryo Development and Morphology Using Medical Computer Vision-Aided Swin Transformer with Boosted Dipper-Throated Optimization Algorithm.","authors":"Alanoud Al Mazroa, Mashael Maashi, Yahia Said, Mohammed Maray, Ahmad A Alzahrani, Abdulwhab Alkharashi, Ali M Al-Sharafi","doi":"10.3390/bioengineering11101044","DOIUrl":null,"url":null,"abstract":"<p><p>Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11101044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering