Gabriel Martínez-Fortún, Alejandro Yánez, Alberto Cuadrado
{"title":"Influence of Screw Angulation on the Mechanical Properties on a Polyaxial Locking Plate Fixation.","authors":"Gabriel Martínez-Fortún, Alejandro Yánez, Alberto Cuadrado","doi":"10.3390/bioengineering11101024","DOIUrl":null,"url":null,"abstract":"<p><p>Polyaxial locking systems are widely used for strategic surgical placement, particularly in cases of osteoporotic bones, comminuted fractures, or when avoiding pre-existing prosthetics. However, studies suggest that polyaxiality negatively impacts system stiffness. We hypothesize that a new plate design, combining a narrow plate with asymmetric holes and polyaxial capabilities, could outperform narrow plates with symmetric holes. Three configurations were tested: Group 1 with six orthogonal screws, and Groups 2 and 3 with polyaxiality in the longitudinal and transverse axes, respectively. A biomechanical model assessed the bone/plate/screw interface under cyclic compression (5000 cycles) and torsion loads until failure. Screws were inserted up to 10° angle. None of the groups showed a significant loss of stiffness during compression (<i>p</i> > 0.05). Group 1 exhibited the highest initial stiffness, followed by Group 3 (<29%) and Group 2 (<35%). In torsional testing, Group 1 achieved the most load cycles (29.096 ± 1.342), while Groups 2 and 3 showed significantly fewer cycles to failure (6.657 ± 3.551 and 4.085 ± 1.934). These results confirm that polyaxiality, while beneficial for surgical placement, reduces biomechanical performance under torsion. Despite this, no group experienced complete decoupling of the screw-plate interface, indicating the robustness of the locking mechanism even under high stress.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11101024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polyaxial locking systems are widely used for strategic surgical placement, particularly in cases of osteoporotic bones, comminuted fractures, or when avoiding pre-existing prosthetics. However, studies suggest that polyaxiality negatively impacts system stiffness. We hypothesize that a new plate design, combining a narrow plate with asymmetric holes and polyaxial capabilities, could outperform narrow plates with symmetric holes. Three configurations were tested: Group 1 with six orthogonal screws, and Groups 2 and 3 with polyaxiality in the longitudinal and transverse axes, respectively. A biomechanical model assessed the bone/plate/screw interface under cyclic compression (5000 cycles) and torsion loads until failure. Screws were inserted up to 10° angle. None of the groups showed a significant loss of stiffness during compression (p > 0.05). Group 1 exhibited the highest initial stiffness, followed by Group 3 (<29%) and Group 2 (<35%). In torsional testing, Group 1 achieved the most load cycles (29.096 ± 1.342), while Groups 2 and 3 showed significantly fewer cycles to failure (6.657 ± 3.551 and 4.085 ± 1.934). These results confirm that polyaxiality, while beneficial for surgical placement, reduces biomechanical performance under torsion. Despite this, no group experienced complete decoupling of the screw-plate interface, indicating the robustness of the locking mechanism even under high stress.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering