Pioneering diabetes screening tool: machine learning driven optical vascular signal analysis.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-11-01 DOI:10.1088/2057-1976/ad89c8
Sameera Fathimal M, J S Kumar, A Jeya Prabha, Jothiraj Selvaraj, Angeline Kirubha S P
{"title":"Pioneering diabetes screening tool: machine learning driven optical vascular signal analysis.","authors":"Sameera Fathimal M, J S Kumar, A Jeya Prabha, Jothiraj Selvaraj, Angeline Kirubha S P","doi":"10.1088/2057-1976/ad89c8","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating prevalence of diabetes mellitus underscores the critical need for non-invasive screening tools capable of early disease detection. Present diagnostic techniques depend on invasive procedures, which highlights the need for advancement of non-invasive alternatives for initial disease detection. Machine learning in integration with the optical sensing technology can effectively analyze the signal patterns associated with diabetes. The objective of this research is to develop and evaluate a non-invasive optical-based method combined with machine learning algorithms for the classification of individuals into normal, prediabetic, and diabetic categories. A novel device was engineered to capture real-time optical vascular signals from participants representing the three glycemic states. The signals were then subjected to quality assessment and preprocessing to ensure data reliability. Subsequently, feature extraction was performed using time-domain analysis and wavelet scattering techniques to derive meaningful characteristics from the optical signals. The extracted features were subsequently employed to train and validate a suite of machine learning algorithms. An ensemble bagged trees classifier with wavelet scattering features and random forest classifier with time-domain features demonstrated superior performance, achieving an overall accuracy of 86.6% and 80.0% in differentiating between normal, prediabetic, and diabetic individuals based on the optical vascular signals. The proposed non-invasive optical-based approach, coupled with advanced machine learning techniques, holds promise as a potential screening tool for diabetes mellitus. The classification accuracy achieved in this study warrants further investigation and validation in larger and more diverse populations.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad89c8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating prevalence of diabetes mellitus underscores the critical need for non-invasive screening tools capable of early disease detection. Present diagnostic techniques depend on invasive procedures, which highlights the need for advancement of non-invasive alternatives for initial disease detection. Machine learning in integration with the optical sensing technology can effectively analyze the signal patterns associated with diabetes. The objective of this research is to develop and evaluate a non-invasive optical-based method combined with machine learning algorithms for the classification of individuals into normal, prediabetic, and diabetic categories. A novel device was engineered to capture real-time optical vascular signals from participants representing the three glycemic states. The signals were then subjected to quality assessment and preprocessing to ensure data reliability. Subsequently, feature extraction was performed using time-domain analysis and wavelet scattering techniques to derive meaningful characteristics from the optical signals. The extracted features were subsequently employed to train and validate a suite of machine learning algorithms. An ensemble bagged trees classifier with wavelet scattering features and random forest classifier with time-domain features demonstrated superior performance, achieving an overall accuracy of 86.6% and 80.0% in differentiating between normal, prediabetic, and diabetic individuals based on the optical vascular signals. The proposed non-invasive optical-based approach, coupled with advanced machine learning techniques, holds promise as a potential screening tool for diabetes mellitus. The classification accuracy achieved in this study warrants further investigation and validation in larger and more diverse populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开创性的糖尿病筛查工具:机器学习驱动的光学血管信号分析。
糖尿病发病率的不断攀升凸显了对能够早期发现疾病的非侵入性筛查工具的迫切需要。目前的诊断技术依赖于侵入性程序,这凸显了对非侵入性替代方法进行初步疾病检测的需求。将机器学习与光学传感技术相结合,可以有效分析与糖尿病相关的信号模式。这项研究的目的是开发和评估一种基于光学的无创方法,并结合机器学习算法,将人分为正常、糖尿病前期和糖尿病三个类别。研究人员设计了一种新型设备,用于捕捉代表三种血糖状态的参与者的实时光学血管信号。然后对信号进行质量评估和预处理,以确保数据的可靠性。随后,利用时域分析和小波散射技术进行特征提取,从光学信号中提取有意义的特征。提取的特征随后用于训练和验证一套机器学习算法。采用小波散射特征的集合袋装树分类器和采用时域特征的随机森林分类器表现出卓越的性能,在根据光学血管信号区分正常人、糖尿病前期和糖尿病人方面的总体准确率分别达到了 86.6% 和 80.0%。所提出的基于光学的无创方法与先进的机器学习技术相结合,有望成为一种潜在的糖尿病筛查工具。这项研究达到的分类准确性值得在更大范围和更多样化的人群中进一步研究和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Dose compensation for decreased biological effective dose due to intrafractional interruption during radiotherapy: integration with a commercial treatment planning system. Open-window MSR Design with Active Magnetic Compensation Coil based on COMSOL Multiphysics. A new method to assess the performance of anti-scatter grids in x-ray projection imaging. Effect of tissue viscoelasticity on delivered mechanical power in a physical respiratory system model: distinguishing between airway and tissue resistance. Local field potential-based brain-machine interface to inhibit epileptic seizures by spinal cord electrical stimulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1