Xue Chen, Yulai Kang, Chunhua Tang, Lili Zhang, Lu Guo
{"title":"TLR4 promotes smooth muscle cell-derived foam cells formation by inducing receptor-independent macropinocytosis.","authors":"Xue Chen, Yulai Kang, Chunhua Tang, Lili Zhang, Lu Guo","doi":"10.1093/bbb/zbae153","DOIUrl":null,"url":null,"abstract":"<p><p>Foam cells are primarily formed through scavenger receptors that mediate the uptake of various modified low-density lipoproteins (LDL) into cells. In addition to the receptor-dependent pathway, macropinocytosis is an essential non-receptor endocytic pathway for vascular smooth muscle cells (VSMCs) to take up lipids. However, the molecular mechanisms underlying this process remain unclear. Primary cultured VSMCs were stimulated with 200 ng/ml lipopolysaccharide (LPS) and 200 μg/ml native LDL (nLDL). We observed a significant increase in TLR4 protein expression and a significant activation of macropinocytosis, which correlated with the highest uptake of nLDL and intracellular lipid deposition in WT VSMCs. However, macropinocytosis was inhibited and lipid accumulation decreased after treatment with macropinocytosis inhibitors and Syk inhibitors in WT VSMCs. Consistently, TLR4 knockout significantly suppressed macropinocytosis and lipid droplets accumulation in VSMCs. Taken together, our findings suggest a critical role of TLR4/Syk signaling in promoting receptor-independent macropinocytosis leading to VSMC-derived foam cells formation.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae153","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Foam cells are primarily formed through scavenger receptors that mediate the uptake of various modified low-density lipoproteins (LDL) into cells. In addition to the receptor-dependent pathway, macropinocytosis is an essential non-receptor endocytic pathway for vascular smooth muscle cells (VSMCs) to take up lipids. However, the molecular mechanisms underlying this process remain unclear. Primary cultured VSMCs were stimulated with 200 ng/ml lipopolysaccharide (LPS) and 200 μg/ml native LDL (nLDL). We observed a significant increase in TLR4 protein expression and a significant activation of macropinocytosis, which correlated with the highest uptake of nLDL and intracellular lipid deposition in WT VSMCs. However, macropinocytosis was inhibited and lipid accumulation decreased after treatment with macropinocytosis inhibitors and Syk inhibitors in WT VSMCs. Consistently, TLR4 knockout significantly suppressed macropinocytosis and lipid droplets accumulation in VSMCs. Taken together, our findings suggest a critical role of TLR4/Syk signaling in promoting receptor-independent macropinocytosis leading to VSMC-derived foam cells formation.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).