Qing Li, Zhihang Hu, Yixuan Wang, Lei Li, Yimin Fan, Irwin King, Gengjie Jia, Sheng Wang, Le Song, Yu Li
{"title":"Progress and opportunities of foundation models in bioinformatics.","authors":"Qing Li, Zhihang Hu, Yixuan Wang, Lei Li, Yimin Fan, Irwin King, Gengjie Jia, Sheng Wang, Le Song, Yu Li","doi":"10.1093/bib/bbae548","DOIUrl":null,"url":null,"abstract":"<p><p>Bioinformatics has undergone a paradigm shift in artificial intelligence (AI), particularly through foundation models (FMs), which address longstanding challenges in bioinformatics such as limited annotated data and data noise. These AI techniques have demonstrated remarkable efficacy across various downstream validation tasks, effectively representing diverse biological entities and heralding a new era in computational biology. The primary goal of this survey is to conduct a general investigation and summary of FMs in bioinformatics, tracing their evolutionary trajectory, current research landscape, and methodological frameworks. Our primary focus is on elucidating the application of FMs to specific biological problems, offering insights to guide the research community in choosing appropriate FMs for tasks like sequence analysis, structure prediction, and function annotation. Each section delves into the intricacies of the targeted challenges, contrasting the architectures and advancements of FMs with conventional methods and showcasing their utility across different biological domains. Further, this review scrutinizes the hurdles and constraints encountered by FMs in biology, including issues of data noise, model interpretability, and potential biases. This analysis provides a theoretical groundwork for understanding the circumstances under which certain FMs may exhibit suboptimal performance. Lastly, we outline prospective pathways and methodologies for the future development of FMs in biological research, facilitating ongoing innovation in the field. This comprehensive examination not only serves as an academic reference but also as a roadmap for forthcoming explorations and applications of FMs in biology.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae548","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Bioinformatics has undergone a paradigm shift in artificial intelligence (AI), particularly through foundation models (FMs), which address longstanding challenges in bioinformatics such as limited annotated data and data noise. These AI techniques have demonstrated remarkable efficacy across various downstream validation tasks, effectively representing diverse biological entities and heralding a new era in computational biology. The primary goal of this survey is to conduct a general investigation and summary of FMs in bioinformatics, tracing their evolutionary trajectory, current research landscape, and methodological frameworks. Our primary focus is on elucidating the application of FMs to specific biological problems, offering insights to guide the research community in choosing appropriate FMs for tasks like sequence analysis, structure prediction, and function annotation. Each section delves into the intricacies of the targeted challenges, contrasting the architectures and advancements of FMs with conventional methods and showcasing their utility across different biological domains. Further, this review scrutinizes the hurdles and constraints encountered by FMs in biology, including issues of data noise, model interpretability, and potential biases. This analysis provides a theoretical groundwork for understanding the circumstances under which certain FMs may exhibit suboptimal performance. Lastly, we outline prospective pathways and methodologies for the future development of FMs in biological research, facilitating ongoing innovation in the field. This comprehensive examination not only serves as an academic reference but also as a roadmap for forthcoming explorations and applications of FMs in biology.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.