Zhiwei Rong, Jiali Song, Yipei Yu, Lan Mi, ManTang Qiu, Yuqin Song, Yan Hou
{"title":"Single-cell mosaic integration and cell state transfer with auto-scaling self-attention mechanism.","authors":"Zhiwei Rong, Jiali Song, Yipei Yu, Lan Mi, ManTang Qiu, Yuqin Song, Yan Hou","doi":"10.1093/bib/bbae540","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of data from multiple modalities generated by single-cell omics technologies is crucial for accurately identifying cell states. One challenge in comprehending multi-omics data resides in mosaic integration, in which different data modalities are profiled in different subsets of cells, as it requires simultaneous batch effect removal and modality alignment. Here, we develop Multi-omics Mosaic Auto-scaling Attention Variational Inference (mmAAVI), a scalable deep generative model for single-cell mosaic integration. Leveraging auto-scaling self-attention mechanisms, mmAAVI can map arbitrary combinations of omics to the common embedding space. If existing well-annotated cell states, the model can perform semisupervised learning to utilize existing these annotations. We validated the performance of mmAAVI and five other commonly used methods on four benchmark datasets, which vary in cell numbers, omics types, and missing patterns. mmAAVI consistently demonstrated its superiority. We also validated mmAAVI's ability for cell state knowledge transfer, achieving balanced accuracies of 0.82 and 0.97 with less 1% labeled cells between batches with completely different omics. The full package is available at https://github.com/luyiyun/mmAAVI.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae540","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of data from multiple modalities generated by single-cell omics technologies is crucial for accurately identifying cell states. One challenge in comprehending multi-omics data resides in mosaic integration, in which different data modalities are profiled in different subsets of cells, as it requires simultaneous batch effect removal and modality alignment. Here, we develop Multi-omics Mosaic Auto-scaling Attention Variational Inference (mmAAVI), a scalable deep generative model for single-cell mosaic integration. Leveraging auto-scaling self-attention mechanisms, mmAAVI can map arbitrary combinations of omics to the common embedding space. If existing well-annotated cell states, the model can perform semisupervised learning to utilize existing these annotations. We validated the performance of mmAAVI and five other commonly used methods on four benchmark datasets, which vary in cell numbers, omics types, and missing patterns. mmAAVI consistently demonstrated its superiority. We also validated mmAAVI's ability for cell state knowledge transfer, achieving balanced accuracies of 0.82 and 0.97 with less 1% labeled cells between batches with completely different omics. The full package is available at https://github.com/luyiyun/mmAAVI.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.