DLAT promotes triple-negative breast cancer progression via YAP1 activation.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-12-31 Epub Date: 2024-10-26 DOI:10.1080/15384047.2024.2421578
Diya Liu, Xuehui Wang, Fengyuan Qian, Danrong Ye, Xiaochong Deng, Lin Fang
{"title":"DLAT promotes triple-negative breast cancer progression via YAP1 activation.","authors":"Diya Liu, Xuehui Wang, Fengyuan Qian, Danrong Ye, Xiaochong Deng, Lin Fang","doi":"10.1080/15384047.2024.2421578","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Breast cancer (BC) is the most prevalent malignant tumor in women globally. Triple-negative breast cancer (TNBC) represents the most malignant and invasive subtype of BC. New therapeutic targets are urgently needed for TNBC owing to its receptor expression characteristics, which render it insensitive to traditional targeted and endocrine therapies for BC. The role and mechanisms of dihydrolipoamide S-acetyltransferase (DLAT) as a crucial molecule in glycometabolism and cuproptosis-related biological processes in tumors remain to be explored.</p><p><strong>Methods: </strong>DLAT expression was investigated using bioinformatics methods and quantitative real-time polymerase chain reaction. Subsequently, the MTT assay, colony formation assay, and migration-invasion assay were performed to validate the effect of DLAT on TNBC cell viability, proliferation, and migration. Cytoplasmic-nuclear separation experiments, western blot analysis, and co-immunoprecipitation assays were performed to elucidate the underlying molecular mechanisms.</p><p><strong>Results: </strong>This study revealed a robust correlation between elevated DLAT expression in BC and unfavorable prognosis in patients, with higher expression of DLAT compared to other subtypes in TNBC. Functional cytology experiments indicated that DLAT plays a tumor-promoting role in TNBC. Mechanistic studies showed that DLAT directly interacts with YAP1, leading to the dephosphorylation and activation of YAP1 and its increased nuclear translocation, thereby transcriptionally activating and regulating downstream oncogenes, promoting the malignant phenotype of TNBC. Rescue experiments indicated that DLAT promotes the malignant behavior of TNBC through a YAP1-dependent pathway.</p><p><strong>Conclusions: </strong>Our research unveiled the significant involvement of DLAT in TNBC, along with the potential for modulating DLAT/YAP1 activity as a targeted treatment strategy for TNBC.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2421578","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Breast cancer (BC) is the most prevalent malignant tumor in women globally. Triple-negative breast cancer (TNBC) represents the most malignant and invasive subtype of BC. New therapeutic targets are urgently needed for TNBC owing to its receptor expression characteristics, which render it insensitive to traditional targeted and endocrine therapies for BC. The role and mechanisms of dihydrolipoamide S-acetyltransferase (DLAT) as a crucial molecule in glycometabolism and cuproptosis-related biological processes in tumors remain to be explored.

Methods: DLAT expression was investigated using bioinformatics methods and quantitative real-time polymerase chain reaction. Subsequently, the MTT assay, colony formation assay, and migration-invasion assay were performed to validate the effect of DLAT on TNBC cell viability, proliferation, and migration. Cytoplasmic-nuclear separation experiments, western blot analysis, and co-immunoprecipitation assays were performed to elucidate the underlying molecular mechanisms.

Results: This study revealed a robust correlation between elevated DLAT expression in BC and unfavorable prognosis in patients, with higher expression of DLAT compared to other subtypes in TNBC. Functional cytology experiments indicated that DLAT plays a tumor-promoting role in TNBC. Mechanistic studies showed that DLAT directly interacts with YAP1, leading to the dephosphorylation and activation of YAP1 and its increased nuclear translocation, thereby transcriptionally activating and regulating downstream oncogenes, promoting the malignant phenotype of TNBC. Rescue experiments indicated that DLAT promotes the malignant behavior of TNBC through a YAP1-dependent pathway.

Conclusions: Our research unveiled the significant involvement of DLAT in TNBC, along with the potential for modulating DLAT/YAP1 activity as a targeted treatment strategy for TNBC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DLAT 通过激活 YAP1 促进三阴性乳腺癌的进展。
背景:乳腺癌(BC)是全球女性发病率最高的恶性肿瘤。三阴性乳腺癌(TNBC)是恶性程度最高的浸润性乳腺癌亚型。由于 TNBC 的受体表达特点,使其对传统的靶向治疗和内分泌治疗不敏感,因此 TNBC 急需新的治疗靶点。二氢脂酰胺 S-乙酰转移酶(DLAT)是肿瘤糖代谢和杯突相关生物过程中的关键分子,其作用和机制仍有待探索:方法:利用生物信息学方法和定量实时聚合酶链反应研究了 DLAT 的表达。方法:利用生物信息学方法和定量实时聚合酶链式反应研究了 DLAT 的表达,随后进行了 MTT 试验、集落形成试验和迁移-侵袭试验,以验证 DLAT 对 TNBC 细胞活力、增殖和迁移的影响。此外,还进行了细胞质-核分离实验、Western印迹分析和共免疫沉淀实验,以阐明潜在的分子机制:结果:该研究发现,DLAT在BC中的表达升高与患者的预后不良有密切关系,与TNBC中的其他亚型相比,DLAT的表达更高。功能细胞学实验表明,DLAT在TNBC中起着促进肿瘤生长的作用。机理研究表明,DLAT直接与YAP1相互作用,导致YAP1去磷酸化和活化,并增加其核转位,从而转录激活和调控下游癌基因,促进TNBC的恶性表型。拯救实验表明,DLAT通过YAP1依赖性途径促进TNBC的恶性行为:我们的研究揭示了DLAT在TNBC中的重要作用,以及调节DLAT/YAP1活性作为TNBC靶向治疗策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. Hotspot areas of tetanus-unprotected births and its associated factors in Ethiopia: Spatial analysis of EDHS data. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1