首页 > 最新文献

Cancer Biology & Therapy最新文献

英文 中文
Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models. 抗CD73和抗PD-L1单克隆抗体联合细胞毒疗法的疗效和药效学效应:小鼠肿瘤模型观察。
IF 3.6 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-01-11 DOI: 10.1080/15384047.2023.2296048
Brajesh P Kaistha, Gozde Kar, Andreas Dannhorn, Amanda Watkins, Grace Opoku-Ansah, Kristina Ilieva, Stefanie Mullins, Judith Anderton, Elena Galvani, Fabien Garcon, Jean-Martin Lapointe, Lee Brown, James Hair, Tim Slidel, Nadia Luheshi, Kelli Ryan, Elizabeth Hardaker, Simon Dovedi, Rakesh Kumar, Robert W Wilkinson, Scott A Hammond, Jim Eyles

CD73 is a cell surface 5'nucleotidase (NT5E) and key node in the catabolic process generating immunosuppressive adenosine in cancer. Using a murine monoclonal antibody surrogate of Oleclumab, we investigated the effect of CD73 inhibition in concert with cytotoxic therapies (chemotherapies as well as fractionated radiotherapy) and PD-L1 blockade. Our results highlight improved survival in syngeneic tumor models of colorectal cancer (CT26 and MC38) and sarcoma (MCA205). This therapeutic outcome was in part driven by cytotoxic CD8 T-cells, as evidenced by the detrimental effect of CD8 depleting antibody treatment of MCA205 tumor bearing mice treated with anti-CD73, anti-PD-L1 and 5-Fluorouracil+Oxaliplatin (5FU+OHP). We hypothesize that the improved responses are tumor microenvironment (TME)-driven, as suggested by the lack of anti-CD73 enhanced cytopathic effects mediated by 5FU+OHP on cell lines in vitro. Pharmacodynamic analysis, using imaging mass cytometry and RNA-sequencing, revealed noteworthy changes in specific cell populations like cytotoxic T cells, B cells and NK cells in the CT26 TME. Transcriptomic analysis highlighted treatment-related modulation of gene profiles associated with an immune response, NK and T-cell activation, T cell receptor signaling and interferon (types 1 & 2) pathways. Inclusion of comparator groups representing the various components of the combination allowed deconvolution of contribution of the individual therapeutic elements; highlighting specific effects mediated by the anti-CD73 antibody with respect to immune-cell representation, chemotaxis and myeloid biology. These pre-clinical data reflect complementarity of adenosine blockade with cytotoxic therapy, and T-cell checkpoint inhibition, and provides new mechanistic insights in support of combination therapy.

CD73 是一种细胞表面 5'nucleotidase (NT5E),是癌症中产生免疫抑制腺苷的分解过程中的关键节点。我们使用小鼠单克隆抗体奥利珠单抗(Oleclumab)替代物,研究了CD73抑制与细胞毒疗法(化疗和分次放疗)和PD-L1阻断的协同作用。我们的研究结果表明,结直肠癌(CT26 和 MC38)和肉瘤(MCA205)共生肿瘤模型的生存率得到了改善。这种治疗结果部分是由细胞毒性 CD8 T 细胞驱动的,这一点可以从 CD8 清除抗体对接受抗 CD73、抗 PD-L1 和 5-氟尿嘧啶+奥沙利铂(5FU+OHP)治疗的 MCA205 肿瘤小鼠的不利影响得到证明。我们推测,抗 CD73 对体外细胞系的细胞病理效应没有增强,这说明反应的改善是由肿瘤微环境(TME)驱动的。利用成像质谱和 RNA 序列进行的药效学分析显示,CT26 TME 中的特定细胞群(如细胞毒性 T 细胞、B 细胞和 NK 细胞)发生了显著变化。转录组分析强调了与免疫反应、NK 和 T 细胞活化、T 细胞受体信号转导和干扰素(1 型和 2 型)通路相关的基因谱的治疗相关调控。纳入代表联合疗法各种成分的比较组后,可以对单个治疗要素的贡献进行解构;突出了抗 CD73 抗体在免疫细胞代表性、趋化性和骨髓生物学方面介导的特定效应。这些临床前数据反映了腺苷阻断与细胞毒疗法和 T 细胞检查点抑制的互补性,并为支持联合疗法提供了新的机理见解。
{"title":"Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.","authors":"Brajesh P Kaistha, Gozde Kar, Andreas Dannhorn, Amanda Watkins, Grace Opoku-Ansah, Kristina Ilieva, Stefanie Mullins, Judith Anderton, Elena Galvani, Fabien Garcon, Jean-Martin Lapointe, Lee Brown, James Hair, Tim Slidel, Nadia Luheshi, Kelli Ryan, Elizabeth Hardaker, Simon Dovedi, Rakesh Kumar, Robert W Wilkinson, Scott A Hammond, Jim Eyles","doi":"10.1080/15384047.2023.2296048","DOIUrl":"10.1080/15384047.2023.2296048","url":null,"abstract":"<p><p>CD73 is a cell surface 5'nucleotidase (NT5E) and key node in the catabolic process generating immunosuppressive adenosine in cancer. Using a murine monoclonal antibody surrogate of Oleclumab, we investigated the effect of CD73 inhibition in concert with cytotoxic therapies (chemotherapies as well as fractionated radiotherapy) and PD-L1 blockade. Our results highlight improved survival in syngeneic tumor models of colorectal cancer (CT26 and MC38) and sarcoma (MCA205). This therapeutic outcome was in part driven by cytotoxic CD8 T-cells, as evidenced by the detrimental effect of CD8 depleting antibody treatment of MCA205 tumor bearing mice treated with anti-CD73, anti-PD-L1 and 5-Fluorouracil+Oxaliplatin (5FU+OHP). We hypothesize that the improved responses are tumor microenvironment (TME)-driven, as suggested by the lack of anti-CD73 enhanced cytopathic effects mediated by 5FU+OHP on cell lines <i>in vitro</i>. Pharmacodynamic analysis, using imaging mass cytometry and RNA-sequencing, revealed noteworthy changes in specific cell populations like cytotoxic T cells, B cells and NK cells in the CT26 TME. Transcriptomic analysis highlighted treatment-related modulation of gene profiles associated with an immune response, NK and T-cell activation, T cell receptor signaling and interferon (types 1 & 2) pathways. Inclusion of comparator groups representing the various components of the combination allowed deconvolution of contribution of the individual therapeutic elements; highlighting specific effects mediated by the anti-CD73 antibody with respect to immune-cell representation, chemotaxis and myeloid biology. These pre-clinical data reflect complementarity of adenosine blockade with cytotoxic therapy, and T-cell checkpoint inhibition, and provides new mechanistic insights in support of combination therapy.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2296048"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TOP2A modulates signaling via the AKT/mTOR pathway to promote ovarian cancer cell proliferation. TOP2A 通过 AKT/mTOR 通路调节信号,促进卵巢癌细胞增殖。
IF 3.6 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-03-06 DOI: 10.1080/15384047.2024.2325126
Kaiwen Zhang, Xingyu Zheng, Yiqing Sun, Xinyu Feng, Xirong Wu, Wenlu Liu, Chao Gao, Ye Yan, Wenyan Tian, Yingmei Wang

Ovarian cancer (OC) is a form of gynecological malignancy that is associated with worse patient outcomes than any other cancer of the female reproductive tract. Topoisomerase II α (TOP2A) is commonly regarded as an oncogene that is associated with malignant disease progression in a variety of cancers, its mechanistic functions in OC have yet to be firmly established. We explored the role of TOP2A in OC through online databases, clinical samples, in vitro and in vivo experiments. And initial analyses of public databases revealed high OC-related TOP2A expression in patient samples that was related to poorer prognosis. This was confirmed by clinical samples in which TOP2A expression was elevated in OC relative to healthy tissue. Kaplan-Meier analyses further suggested that higher TOP2A expression levels were correlated with worse prognosis in OC patients. In vitro, TOP2A knockdown resulted in the inhibition of OC cell proliferation, with cells entering G1 phase arrest and undergoing consequent apoptotic death. In rescue assays, TOP2A was confirmed to regulate cell proliferation and cell cycle through AKT/mTOR pathway activity. Mouse model experiments further affirmed the key role that TOP2A plays as a driver of OC cell proliferation. These data provide strong evidence supporting TOP2A as an oncogenic mediator and prognostic biomarker related to OC progression and poor outcomes. At the mechanistic level, TOP2A can control tumor cell growth via AKT/mTOR pathway modulation. These preliminary results provide a foundation for future research seeking to explore the utility of TOP2A inhibitor-based combination treatment regimens in platinum-resistant recurrent OC patients.

卵巢癌(OC)是一种妇科恶性肿瘤,与女性生殖道的其他癌症相比,卵巢癌患者的预后更差。拓扑异构酶 II α(TOP2A)通常被认为是一种与多种癌症的恶性疾病进展相关的致癌基因,但它在卵巢癌中的机理功能尚未得到确定。我们通过在线数据库、临床样本、体外和体内实验探索了TOP2A在OC中的作用。对公共数据库的初步分析显示,患者样本中与 OC 相关的 TOP2A 高表达与较差的预后有关。这一点在临床样本中得到了证实,与健康组织相比,OC 中的 TOP2A 表达更高。Kaplan-Meier分析进一步表明,TOP2A表达水平越高,OC患者的预后越差。在体外,TOP2A 基因敲除可抑制 OC 细胞的增殖,使细胞进入 G1 期停滞并随之凋亡。在挽救实验中,TOP2A被证实通过AKT/mTOR通路的活性调节细胞增殖和细胞周期。小鼠模型实验进一步证实了 TOP2A 在 OC 细胞增殖中的关键驱动作用。这些数据提供了强有力的证据,支持 TOP2A 成为与 OC 进展和不良预后相关的致癌介质和预后生物标志物。在机理层面,TOP2A 可通过 AKT/mTOR 通路调节控制肿瘤细胞的生长。这些初步结果为今后的研究奠定了基础,有助于探索基于TOP2A抑制剂的联合治疗方案在铂耐药复发性OC患者中的应用。
{"title":"TOP2A modulates signaling via the AKT/mTOR pathway to promote ovarian cancer cell proliferation.","authors":"Kaiwen Zhang, Xingyu Zheng, Yiqing Sun, Xinyu Feng, Xirong Wu, Wenlu Liu, Chao Gao, Ye Yan, Wenyan Tian, Yingmei Wang","doi":"10.1080/15384047.2024.2325126","DOIUrl":"10.1080/15384047.2024.2325126","url":null,"abstract":"<p><p>Ovarian cancer (OC) is a form of gynecological malignancy that is associated with worse patient outcomes than any other cancer of the female reproductive tract. Topoisomerase II α (TOP2A) is commonly regarded as an oncogene that is associated with malignant disease progression in a variety of cancers, its mechanistic functions in OC have yet to be firmly established. We explored the role of TOP2A in OC through online databases, clinical samples, in vitro and in vivo experiments. And initial analyses of public databases revealed high OC-related TOP2A expression in patient samples that was related to poorer prognosis. This was confirmed by clinical samples in which TOP2A expression was elevated in OC relative to healthy tissue. Kaplan-Meier analyses further suggested that higher TOP2A expression levels were correlated with worse prognosis in OC patients. In vitro, TOP2A knockdown resulted in the inhibition of OC cell proliferation, with cells entering G1 phase arrest and undergoing consequent apoptotic death. In rescue assays, TOP2A was confirmed to regulate cell proliferation and cell cycle through AKT/mTOR pathway activity. Mouse model experiments further affirmed the key role that TOP2A plays as a driver of OC cell proliferation. These data provide strong evidence supporting TOP2A as an oncogenic mediator and prognostic biomarker related to OC progression and poor outcomes. At the mechanistic level, TOP2A can control tumor cell growth via AKT/mTOR pathway modulation. These preliminary results provide a foundation for future research seeking to explore the utility of TOP2A inhibitor-based combination treatment regimens in platinum-resistant recurrent OC patients.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2325126"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The polymeric fluoropyrimidine CF10 overcomes limitations of 5-FU in pancreatic ductal adenocarcinoma cells through increased replication stress. 聚合氟嘧啶 CF10 通过增加复制应激克服了 5-FU 在胰腺导管腺癌细胞中的局限性。
IF 5.4 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-11-08 DOI: 10.1080/15384047.2024.2421584
Jennifer M Finan, Roberto Di Niro, Soon Young Park, Kang Jin Jeong, Madeline D Hedberg, Alexander Smith, Grace A McCarthy, Alex O Haber, John Muschler, Rosalie C Sears, Gordon B Mills, William H Gmeiner, Jonathan R Brody

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease soon to become the second leading cause of cancer deaths in the US. Beside surgery, current therapies have narrow clinical benefits with systemic toxicities. FOLFIRINOX is the current standard of care, one component of which is 5- Fluorouracil (5-FU), which causes serious gastrointestinal and hematopoietic toxicities and is vulnerable to resistance mechanisms. Recently, we have developed polymeric fluoropyrimidines (F10, CF10) which unlike 5-FU, are, in principle, completely converted to the thymidylate synthase inhibitory metabolite FdUMP, without generating appreciable levels of ribonucleotides that cause systemic toxicities while displaying much stronger anti-cancer activity. Here, we confirm the potency of CF10 and investigate enhancement of its efficacy through combination with inhibitors in vitro targeting replication stress, a hallmark of PDAC cells. CF10 is 308-times more potent as a single agent than 5-FU and was effective in the nM range in primary patient derived models. Further, we find that activity of CF10, but not 5-FU, is enhanced through combination with inhibitors of ATR and Wee1 that regulate the S and G2 DNA damage checkpoints and can be reversed by addition of dNTPs indicative of CF10 acting, at least in part, through inducing replication stress. Our results indicate CF10 has the potential to supersede the established benefit of 5-FU in PDAC treatment and indicate novel combination approaches that should be validated in vivo and may be beneficial in established regimens that include 5-FU.

胰腺导管腺癌(PDAC)是一种致命疾病,很快将成为美国癌症死亡的第二大原因。除手术治疗外,目前的疗法临床疗效不佳,且有全身毒性。FOLFIRINOX是目前的标准疗法,其中一种成分是5-氟尿嘧啶(5-FU),它会导致严重的胃肠道和造血毒性,而且容易产生耐药机制。最近,我们开发了聚合氟嘧啶(F10、CF10),与 5-FU 不同的是,这种药物原则上可完全转化为胸腺嘧啶合成酶抑制性代谢物 FdUMP,而不会产生明显的核糖核苷酸,从而导致全身毒性,同时显示出更强的抗癌活性。在此,我们证实了 CF10 的效力,并研究了通过与针对 PDAC 细胞特征--复制应激的体外抑制剂联合使用来增强其疗效的方法。CF10 的单药效力是 5-FU 的 308 倍,在原发性患者衍生模型中的效力在 nM 范围内。此外,我们还发现 CF10(而非 5-FU)与调节 S 和 G2 DNA 损伤检查点的 ATR 和 Wee1 抑制剂联合使用后,其活性会得到增强,并且可以通过添加 dNTPs 而逆转,这表明 CF10 至少部分是通过诱导复制应激发挥作用的。我们的研究结果表明,CF10 有可能取代 5-FU 在 PDAC 治疗中的既有疗效,并指出了新的联合用药方法,这些方法应在体内进行验证,并可能有益于包括 5-FU 在内的既有治疗方案。
{"title":"The polymeric fluoropyrimidine CF10 overcomes limitations of 5-FU in pancreatic ductal adenocarcinoma cells through increased replication stress.","authors":"Jennifer M Finan, Roberto Di Niro, Soon Young Park, Kang Jin Jeong, Madeline D Hedberg, Alexander Smith, Grace A McCarthy, Alex O Haber, John Muschler, Rosalie C Sears, Gordon B Mills, William H Gmeiner, Jonathan R Brody","doi":"10.1080/15384047.2024.2421584","DOIUrl":"10.1080/15384047.2024.2421584","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease soon to become the second leading cause of cancer deaths in the US. Beside surgery, current therapies have narrow clinical benefits with systemic toxicities. FOLFIRINOX is the current standard of care, one component of which is 5- Fluorouracil (5-FU), which causes serious gastrointestinal and hematopoietic toxicities and is vulnerable to resistance mechanisms. Recently, we have developed polymeric fluoropyrimidines (F10, CF10) which unlike 5-FU, are, in principle, completely converted to the thymidylate synthase inhibitory metabolite FdUMP, without generating appreciable levels of ribonucleotides that cause systemic toxicities while displaying much stronger anti-cancer activity. Here, we confirm the potency of CF10 and investigate enhancement of its efficacy through combination with inhibitors in vitro targeting replication stress, a hallmark of PDAC cells. CF10 is 308-times more potent as a single agent than 5-FU and was effective in the nM range in primary patient derived models. Further, we find that activity of CF10, but not 5-FU, is enhanced through combination with inhibitors of ATR and Wee1 that regulate the S and G2 DNA damage checkpoints and can be reversed by addition of dNTPs indicative of CF10 acting, at least in part, through inducing replication stress. Our results indicate CF10 has the potential to supersede the established benefit of 5-FU in PDAC treatment and indicate novel combination approaches that should be validated in vivo and may be beneficial in established regimens that include 5-FU.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2421584"},"PeriodicalIF":5.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 3.6 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-05-15 DOI: 10.1080/15384047.2024.2352926
{"title":"Correction.","authors":"","doi":"10.1080/15384047.2024.2352926","DOIUrl":"https://doi.org/10.1080/15384047.2024.2352926","url":null,"abstract":"","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2352926"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 4.4 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-07-01 DOI: 10.1080/15384047.2024.2375109
{"title":"Correction.","authors":"","doi":"10.1080/15384047.2024.2375109","DOIUrl":"10.1080/15384047.2024.2375109","url":null,"abstract":"","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2375109"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 4.4 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-08-19 DOI: 10.1080/15384047.2024.2392996
{"title":"Correction.","authors":"","doi":"10.1080/15384047.2024.2392996","DOIUrl":"10.1080/15384047.2024.2392996","url":null,"abstract":"","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2392996"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor microenvironment in primary central nervous system lymphoma (PCNSL). 原发性中枢神经系统淋巴瘤(PCNSL)的肿瘤微环境。
IF 4.4 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-11-18 DOI: 10.1080/15384047.2024.2425131
Qiqi Jin, Haoyun Jiang, Ye Han, Litian Zhang, Cuicui Li, Yurong Zhang, Ye Chai, Pengyun Zeng, Lingling Yue, Chongyang Wu

Primary central nervous system lymphoma (PCNSL) is one of the rare lymphomas limited to the central nervous system. With the availability of immunotherapy, the tumor microenvironment (TME) attracts much attention nowadays. However, the systematic studies on the TME of PCNSL are lacking. By reviewing the existing research, we found that the TME of PCNSL is infiltrated with abundant TAMs and TILs, among which cytotoxic T cells (CTLs) and M2-polarized macrophages are principal. However, the counts of immune cells infiltrated in the TME of PCNSL are significantly lower than systemic diffuse large B-cell lymphoma (DLBCL). In addition, PCNSL can attract the infiltration of immunosuppressive cells and the loss of HLA I/II expression, overexpress inhibitory immune checkpoints, and release immunosuppressive cytokines to form an immunosuppressive TME. The immunosuppressive effect of TME in PCNSL is significantly stronger than that in systemic DLBCL. These characteristics of TME highlight the immunosuppression of PCNSL.

原发性中枢神经系统淋巴瘤(PCNSL)是局限于中枢神经系统的罕见淋巴瘤之一。随着免疫疗法的出现,肿瘤微环境(TME)备受关注。然而,关于 PCNSL 肿瘤微环境的系统研究却十分缺乏。通过回顾现有研究,我们发现 PCNSL 的肿瘤微环境中浸润着大量的 TAM 和 TIL,其中细胞毒性 T 细胞(CTL)和 M2 极化巨噬细胞是主要的细胞毒性 T 细胞。不过,PCNSL TME 中浸润的免疫细胞数量明显低于全身性弥漫大 B 细胞淋巴瘤(DLBCL)。此外,PCNSL 还能吸引免疫抑制细胞浸润和 HLA I/II 表达缺失,过度表达抑制性免疫检查点,并释放免疫抑制细胞因子,形成免疫抑制性 TME。PCNSL 中 TME 的免疫抑制作用明显强于全身性 DLBCL。TME的这些特点凸显了PCNSL的免疫抑制作用。
{"title":"Tumor microenvironment in primary central nervous system lymphoma (PCNSL).","authors":"Qiqi Jin, Haoyun Jiang, Ye Han, Litian Zhang, Cuicui Li, Yurong Zhang, Ye Chai, Pengyun Zeng, Lingling Yue, Chongyang Wu","doi":"10.1080/15384047.2024.2425131","DOIUrl":"10.1080/15384047.2024.2425131","url":null,"abstract":"<p><p>Primary central nervous system lymphoma (PCNSL) is one of the rare lymphomas limited to the central nervous system. With the availability of immunotherapy, the tumor microenvironment (TME) attracts much attention nowadays. However, the systematic studies on the TME of PCNSL are lacking. By reviewing the existing research, we found that the TME of PCNSL is infiltrated with abundant TAMs and TILs, among which cytotoxic T cells (CTLs) and M2-polarized macrophages are principal. However, the counts of immune cells infiltrated in the TME of PCNSL are significantly lower than systemic diffuse large B-cell lymphoma (DLBCL). In addition, PCNSL can attract the infiltration of immunosuppressive cells and the loss of HLA I/II expression, overexpress inhibitory immune checkpoints, and release immunosuppressive cytokines to form an immunosuppressive TME. The immunosuppressive effect of TME in PCNSL is significantly stronger than that in systemic DLBCL. These characteristics of TME highlight the immunosuppression of PCNSL.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2425131"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A positive feedback loop of SRSF9/USP22/ZEB1 promotes the progression of ovarian cancer. SRSF9/USP22/ZEB1的正反馈回路促进了卵巢癌的进展。
IF 4.4 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-11-12 DOI: 10.1080/15384047.2024.2427415
Jing Wang, Ming Hu, Jie Min, Xin Li

Ovarian cancer (OC) is recognized as the most lethal type of gynecological malignancy, making treatment options challenging. Discovering novel therapeutic targets will benefit OC patients. This study aimed to reveal the mechanism by which SRSF9 regulates OC progression. Cell proliferation was determined via CCK-8 assays, whereas cell migration and invasion were monitored via Transwell assays. Western blotting and qPCR assays were used to detect protein and mRNA alterations. RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were performed to investigate the relationships between SRSF9 and USP22. Co-IP was used to validate the interaction between USP22 and ZEB1. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were used to verify the regulatory effect of ZEB1 on the transcription of SRSF9. Subcutaneous xenograft models were established to evaluate the impact of SRSF9 on tumor development. Knockdown of SRSF9 significantly suppressed the proliferation, invasion, migration, tumorigenicity, and epithelial‒mesenchymal transition (EMT) of OC cells. SRSF9 can bind to USP22 mRNA, increasing its stability. Moreover, the overexpression of USP22 reversed the impact of SRSF9 silencing on malignant phenotypes. USP22 can mediate the deubiquitination of ZEB1, thereby enhancing the progression of OC. Furthermore, ZEB1 upregulated SRSF9 expression through transcriptional activation, thus establishing a positive feedback loop. SRSF9 enhanced the malignant characteristics of OC through a positive feedback loop of SRSF9/USP22/ZEB1. This functional circuit may help in the development of novel therapeutic approaches for treating OC.

卵巢癌(OC)是公认的致死率最高的妇科恶性肿瘤,因此治疗方案充满挑战。发现新的治疗靶点将使卵巢癌患者受益。本研究旨在揭示SRSF9调控OC进展的机制。细胞增殖通过CCK-8检测法确定,而细胞迁移和侵袭则通过Transwell检测法监测。采用 Western 印迹和 qPCR 方法检测蛋白质和 mRNA 的变化。为了研究 SRSF9 和 USP22 之间的关系,进行了 RNA 拉取、RNA 免疫沉淀(RIP)和放线菌素 D 实验。Co-IP 用于验证 USP22 和 ZEB1 之间的相互作用。染色质免疫沉淀(ChIP)和双荧光素酶报告实验用于验证 ZEB1 对 SRSF9 转录的调控作用。建立皮下异种移植模型以评估SRSF9对肿瘤发生的影响。敲除SRSF9能显著抑制OC细胞的增殖、侵袭、迁移、致瘤性和上皮-间质转化(EMT)。SRSF9能与USP22 mRNA结合,增加其稳定性。此外,USP22的过表达逆转了SRSF9沉默对恶性表型的影响。USP22 可以介导 ZEB1 的去泛素化,从而促进 OC 的进展。此外,ZEB1通过转录激活上调SRSF9的表达,从而建立了一个正反馈回路。SRSF9通过SRSF9/USP22/ZEB1的正反馈回路增强了OC的恶性特征。这一功能回路可能有助于开发治疗OC的新型疗法。
{"title":"A positive feedback loop of SRSF9/USP22/ZEB1 promotes the progression of ovarian cancer.","authors":"Jing Wang, Ming Hu, Jie Min, Xin Li","doi":"10.1080/15384047.2024.2427415","DOIUrl":"10.1080/15384047.2024.2427415","url":null,"abstract":"<p><p>Ovarian cancer (OC) is recognized as the most lethal type of gynecological malignancy, making treatment options challenging. Discovering novel therapeutic targets will benefit OC patients. This study aimed to reveal the mechanism by which SRSF9 regulates OC progression. Cell proliferation was determined via CCK-8 assays, whereas cell migration and invasion were monitored via Transwell assays. Western blotting and qPCR assays were used to detect protein and mRNA alterations. RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were performed to investigate the relationships between SRSF9 and USP22. Co-IP was used to validate the interaction between USP22 and ZEB1. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were used to verify the regulatory effect of ZEB1 on the transcription of SRSF9. Subcutaneous xenograft models were established to evaluate the impact of SRSF9 on tumor development. Knockdown of SRSF9 significantly suppressed the proliferation, invasion, migration, tumorigenicity, and epithelial‒mesenchymal transition (EMT) of OC cells. SRSF9 can bind to USP22 mRNA, increasing its stability. Moreover, the overexpression of USP22 reversed the impact of SRSF9 silencing on malignant phenotypes. USP22 can mediate the deubiquitination of ZEB1, thereby enhancing the progression of OC. Furthermore, ZEB1 upregulated SRSF9 expression through transcriptional activation, thus establishing a positive feedback loop. SRSF9 enhanced the malignant characteristics of OC through a positive feedback loop of SRSF9/USP22/ZEB1. This functional circuit may help in the development of novel therapeutic approaches for treating OC.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2427415"},"PeriodicalIF":4.4,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-10b-5p promotes tumor growth by regulating cell metabolism in liver cancer via targeting SLC38A2. miR-10b-5p 通过靶向 SLC38A2 调节肝癌细胞代谢促进肿瘤生长
IF 3.6 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-02-23 DOI: 10.1080/15384047.2024.2315651
Mingzhi Xia, Jie Chen, Yingyun Hu, Bin Qu, Qianqian Bu, Haoming Shen

Metabolic reprogramming plays a critical role in hepatocarcinogenesis. However, the mechanisms regulating metabolic reprogramming in primary liver cancer (PLC) are unknown. Differentially expressed miRNAs between PLC and normal tissues were identified using bioinformatic analysis. RT-qPCR was used to determine miR-10b-5p and SCL38A2 expression levels. IHC, WB, and TUNEL assays were used to assess the proliferation and apoptosis of the tissues. The proliferation, migration, invasion, and apoptosis of PLC cells were determined using the CCK-8 assay, Transwell assay, and flow cytometry. The interaction between miR-10b-5p and SLC38A2 was determined using dual-luciferase reporter assay. A PLC xenograft model in BALB/c nude mice was established, and tumorigenicity and SLC38A2 expression were estimated. Finally, liquid chromatography - mass spectrometry (LC-MS) untargeted metabolomics was used to analyze the metabolic profiles of xenograft PLC tissues in nude mice. miR-10b-5p was a key molecule in the regulation of PLC. Compared with para-carcinoma tissues, miR-10b-5p expression was increased in tumor tissues. miR-10b-5p facilitated proliferation, migration, and invasion of PLC cells. Mechanistically, miR-10b-5p targeted SLC38A2 to promote PLC tumor growth. Additionally, miR-10b-5p altered the metabolic features of PLC in vivo. Overexpression of miR-10b-5p resulted in remarkably higher amounts of lumichrome, folic acid, octanoylcarnitine, and Beta-Nicotinamide adenine dinucleotide, but lower levels of 2-methylpropanal, glycyl-leucine, and 2-hydroxycaproic acid. miR-10b-5p facilitates the metabolic reprogramming of PLC by targeting SLC38A2, which ultimately boosts the proliferation, migration, and invasion of PLC cells. Therefore, miR-10b-5p and SLC38A2 are potential targets for PLC diagnosis and treatment.

代谢重编程在肝癌发生过程中起着至关重要的作用。然而,原发性肝癌(PLC)代谢重编程的调控机制尚不清楚。通过生物信息学分析确定了原发性肝癌和正常组织中表达不同的 miRNA。采用 RT-qPCR 确定 miR-10b-5p 和 SCL38A2 的表达水平。采用 IHC、WB 和 TUNEL 检测法评估组织的增殖和凋亡。利用 CCK-8 试验、Transwell 试验和流式细胞术测定了 PLC 细胞的增殖、迁移、侵袭和凋亡。使用双荧光素酶报告实验测定了 miR-10b-5p 与 SLC38A2 之间的相互作用。在 BALB/c 裸鼠中建立了 PLC 异种移植模型,并对其致瘤性和 SLC38A2 表达进行了评估。最后,利用液相色谱-质谱(LC-MS)非靶向代谢组学分析了裸鼠异种移植 PLC 组织的代谢谱。与癌旁组织相比,miR-10b-5p在肿瘤组织中的表达增加。从机制上看,miR-10b-5p靶向SLC38A2,促进了PLC肿瘤的生长。此外,miR-10b-5p 还改变了 PLC 在体内的代谢特征。通过靶向 SLC38A2,miR-10b-5p 促进了 PLC 的代谢重编程,最终促进了 PLC 细胞的增殖、迁移和侵袭。因此,miR-10b-5p 和 SLC38A2 是诊断和治疗 PLC 的潜在靶点。
{"title":"miR-10b-5p promotes tumor growth by regulating cell metabolism in liver cancer via targeting SLC38A2.","authors":"Mingzhi Xia, Jie Chen, Yingyun Hu, Bin Qu, Qianqian Bu, Haoming Shen","doi":"10.1080/15384047.2024.2315651","DOIUrl":"10.1080/15384047.2024.2315651","url":null,"abstract":"<p><p>Metabolic reprogramming plays a critical role in hepatocarcinogenesis. However, the mechanisms regulating metabolic reprogramming in primary liver cancer (PLC) are unknown. Differentially expressed miRNAs between PLC and normal tissues were identified using bioinformatic analysis. RT-qPCR was used to determine miR-10b-5p and SCL38A2 expression levels. IHC, WB, and TUNEL assays were used to assess the proliferation and apoptosis of the tissues. The proliferation, migration, invasion, and apoptosis of PLC cells were determined using the CCK-8 assay, Transwell assay, and flow cytometry. The interaction between miR-10b-5p and SLC38A2 was determined using dual-luciferase reporter assay. A PLC xenograft model in BALB/c nude mice was established, and tumorigenicity and SLC38A2 expression were estimated. Finally, liquid chromatography - mass spectrometry (LC-MS) untargeted metabolomics was used to analyze the metabolic profiles of xenograft PLC tissues in nude mice. miR-10b-5p was a key molecule in the regulation of PLC. Compared with para-carcinoma tissues, miR-10b-5p expression was increased in tumor tissues. miR-10b-5p facilitated proliferation, migration, and invasion of PLC cells. Mechanistically, miR-10b-5p targeted SLC38A2 to promote PLC tumor growth. Additionally, miR-10b-5p altered the metabolic features of PLC <i>in vivo</i>. Overexpression of miR-10b-5p resulted in remarkably higher amounts of lumichrome, folic acid, octanoylcarnitine, and Beta-Nicotinamide adenine dinucleotide, but lower levels of 2-methylpropanal, glycyl-leucine, and 2-hydroxycaproic acid. miR-10b-5p facilitates the metabolic reprogramming of PLC by targeting SLC38A2, which ultimately boosts the proliferation, migration, and invasion of PLC cells. Therefore, miR-10b-5p and SLC38A2 are potential targets for PLC diagnosis and treatment.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2315651"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiR-378a-5p exerts a radiosensitizing effect on CRC through LRP8/β-catenin axis. MiR-378a-5p通过LRP8/β-catenin轴对CRC产生放射增敏作用。
IF 3.6 4区 医学 Q2 ONCOLOGY Pub Date : 2024-12-31 Epub Date: 2024-02-22 DOI: 10.1080/15384047.2024.2308165
Guolin Hu, Pengbiao Che, Ling Deng, Lei Liu, Jia Liao, Qi Liu

Background: MiRNAs are closely related to tumor radiosensitivity. MiR-378a-5p level is down-regulated in colorectal cancer (CRC). Therefore, this study intends to explore the role of miR-378a-5p in CRC, especially radiosensitivity.

Methods: The expression of miR-378a-5p was analyzed in CRC samples. CRC cell lines were treated with different doses of X-rays. Bioinformatics analysis, dual-luciferase reporter assay and RT-qPCR were used to detect the expressions and binding relationship of miR-378a-5p and low-density lipoprotein receptor-related protein 8 (LRP8). MiR-378a-5p inhibitor or/and siLRP8 were transfected into CRC cells with or without irradiation. Subsequently, clonogenic assay, flow cytometry and in vivo experiments including tumorigenesis assay, immunohistochemistry, RT-qPCR and Western blot were performed to clarify the role of miR-378a-5p/LRP8 axis in the radiosensitivity of CRC.

Results: The down-regulated expression of miR-378a-5p in CRC is related to histological differentiation and tumor-node-metastasis (TNM) stage. After irradiation, the survival fraction of CRC cells was decreased, while the apoptotic rate and the level of miR-378a-5p were increased. Restrained miR-378a-5p repressed apoptosis and apoptosis-related protein expressions, yet promoted the proliferation and the radioresistance of cells by regulating β-catenin in CRC cells. LRP8 was highly expressed in CRC, and targeted by miR-378a-5p. SiLRP8 improved radiosensitivity and reversed the effect of miR-378a-5p down-regulation on CRC cells. Overexpressed miR-378a-5p and irradiation enhanced the level of miR-378a-5p, yet suppressed the expressions of Ki67 and LRP8 as well as tumorigenesis.

Conclusion: MiR-378a-5p may exert a radiosensitizing effect on CRC through the LRP8/β-catenin axis, which may be a new therapeutic target for CRC radioresistance.

背景MiRNA与肿瘤放射敏感性密切相关。MiR-378a-5p水平在结直肠癌(CRC)中下调。因此,本研究旨在探讨 miR-378a-5p 在 CRC 中的作用,尤其是放射敏感性:方法:分析 CRC 样本中 miR-378a-5p 的表达。方法:分析 miR-378a-5p 在 CRC 样本中的表达。生物信息学分析、双荧光素酶报告分析和 RT-qPCR 检测了 miR-378a-5p 和低密度脂蛋白受体相关蛋白 8(LRP8)的表达及结合关系。将 MiR-378a-5p 抑制剂或/和 siLRP8 转染至接受或不接受辐照的 CRC 细胞。随后,进行了克隆生成试验、流式细胞术和体内实验,包括肿瘤发生试验、免疫组化、RT-qPCR和Western印迹,以明确miR-378a-5p/LRP8轴在CRC放射敏感性中的作用:结果:miR-378a-5p在CRC中的下调表达与组织学分化和肿瘤-结节-转移(TNM)分期有关。辐照后,CRC 细胞的存活率下降,而凋亡率和 miR-378a-5p 水平上升。受抑制的miR-378a-5p抑制了CRC细胞的凋亡和凋亡相关蛋白的表达,但通过调节β-catenin促进了细胞的增殖和放射抗性。LRP8在CRC中高表达,并被miR-378a-5p靶向。SiLRP8能改善CRC细胞的放射敏感性,并逆转miR-378a-5p下调对CRC细胞的影响。过表达的miR-378a-5p和辐照提高了miR-378a-5p的水平,但却抑制了Ki67和LRP8的表达以及肿瘤的发生:MiR-378a-5p可能通过LRP8/β-catenin轴对CRC产生放射增敏作用,这可能是治疗CRC放射耐药的新靶点。
{"title":"MiR-378a-5p exerts a radiosensitizing effect on CRC through LRP8/β-catenin axis.","authors":"Guolin Hu, Pengbiao Che, Ling Deng, Lei Liu, Jia Liao, Qi Liu","doi":"10.1080/15384047.2024.2308165","DOIUrl":"10.1080/15384047.2024.2308165","url":null,"abstract":"<p><strong>Background: </strong>MiRNAs are closely related to tumor radiosensitivity. MiR-378a-5p level is down-regulated in colorectal cancer (CRC). Therefore, this study intends to explore the role of miR-378a-5p in CRC, especially radiosensitivity.</p><p><strong>Methods: </strong>The expression of miR-378a-5p was analyzed in CRC samples. CRC cell lines were treated with different doses of X-rays. Bioinformatics analysis, dual-luciferase reporter assay and RT-qPCR were used to detect the expressions and binding relationship of miR-378a-5p and low-density lipoprotein receptor-related protein 8 (LRP8). MiR-378a-5p inhibitor or/and siLRP8 were transfected into CRC cells with or without irradiation. Subsequently, clonogenic assay, flow cytometry and <i>in vivo</i> experiments including tumorigenesis assay, immunohistochemistry, RT-qPCR and Western blot were performed to clarify the role of miR-378a-5p/LRP8 axis in the radiosensitivity of CRC.</p><p><strong>Results: </strong>The down-regulated expression of miR-378a-5p in CRC is related to histological differentiation and tumor-node-metastasis (TNM) stage. After irradiation, the survival fraction of CRC cells was decreased, while the apoptotic rate and the level of miR-378a-5p were increased. Restrained miR-378a-5p repressed apoptosis and apoptosis-related protein expressions, yet promoted the proliferation and the radioresistance of cells by regulating β-catenin in CRC cells. LRP8 was highly expressed in CRC, and targeted by miR-378a-5p. SiLRP8 improved radiosensitivity and reversed the effect of miR-378a-5p down-regulation on CRC cells. Overexpressed miR-378a-5p and irradiation enhanced the level of miR-378a-5p, yet suppressed the expressions of Ki67 and LRP8 as well as tumorigenesis.</p><p><strong>Conclusion: </strong>MiR-378a-5p may exert a radiosensitizing effect on CRC through the LRP8/β-catenin axis, which may be a new therapeutic target for CRC radioresistance.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2308165"},"PeriodicalIF":3.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10896128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer Biology & Therapy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1