Asparagine614 Determines the Transport and Function of the Murine Anti-Aging Protein Klotho.

IF 5.1 2区 生物学 Q2 CELL BIOLOGY Cells Pub Date : 2024-10-21 DOI:10.3390/cells13201743
Zahra Fanaei-Kahrani, Christoph Kaether
{"title":"Asparagine614 Determines the Transport and Function of the Murine Anti-Aging Protein Klotho.","authors":"Zahra Fanaei-Kahrani, Christoph Kaether","doi":"10.3390/cells13201743","DOIUrl":null,"url":null,"abstract":"<p><p>Klotho is an anti-aging protein whose deletion significantly reduces lifespan in mice, while its over-expression increases lifespan. Klotho is a type-I transmembrane protein that is N-glycosylated at eight positions within its ectodomain. Our study demonstrates that N-glycosylation or mutation at position N614, but not at N161, N285, or N346 in mouse Klotho, is critically involved in the transport of Klotho out of the endoplasmic reticulum (ER). Consequently, while wild-type Klotho-EGFP as well as the N-glycosylation mutants N161Q, N285Q, and N346Q were present at the plasma membrane (PM), only small amounts of the N614Q Klotho-EGFP were present at the PM, with most of the protein accumulating in the ER. Protein interactome analysis of Klotho-EGFP N614Q revealed increased interactions with proteasome-related proteins and proteins involved in ER protein processing, like heat shock proteins and protein disulfide isomerases, indicative of impaired protein folding. Co-immunoprecipitation experiments confirmed the interaction of Klotho-EGFP N614Q with ER chaperons. Interestingly, despite the low amounts of Klotho-EGFP N614Q at the PM, it efficiently induced FGF receptor-mediated ERK activation in the presence of FGF23, highlighting its efficacy in triggering downstream signaling, even in limited quantities at the PM.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 20","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells13201743","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Klotho is an anti-aging protein whose deletion significantly reduces lifespan in mice, while its over-expression increases lifespan. Klotho is a type-I transmembrane protein that is N-glycosylated at eight positions within its ectodomain. Our study demonstrates that N-glycosylation or mutation at position N614, but not at N161, N285, or N346 in mouse Klotho, is critically involved in the transport of Klotho out of the endoplasmic reticulum (ER). Consequently, while wild-type Klotho-EGFP as well as the N-glycosylation mutants N161Q, N285Q, and N346Q were present at the plasma membrane (PM), only small amounts of the N614Q Klotho-EGFP were present at the PM, with most of the protein accumulating in the ER. Protein interactome analysis of Klotho-EGFP N614Q revealed increased interactions with proteasome-related proteins and proteins involved in ER protein processing, like heat shock proteins and protein disulfide isomerases, indicative of impaired protein folding. Co-immunoprecipitation experiments confirmed the interaction of Klotho-EGFP N614Q with ER chaperons. Interestingly, despite the low amounts of Klotho-EGFP N614Q at the PM, it efficiently induced FGF receptor-mediated ERK activation in the presence of FGF23, highlighting its efficacy in triggering downstream signaling, even in limited quantities at the PM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天冬酰胺 614 决定小鼠抗衰老蛋白 Klotho 的运输和功能
Klotho 是一种抗衰老蛋白,其缺失会显著缩短小鼠的寿命,而过度表达则会延长寿命。Klotho 是一种 I 型跨膜蛋白,在其外显子结构域的八个位置有 N-糖基化。我们的研究表明,在小鼠 Klotho 中,N614 位(而不是 N161、N285 或 N346 位)的 N-糖基化或突变是 Klotho 从内质网(ER)转运出去的关键。因此,野生型 Klotho-EGFP 以及 N-糖基化突变体 N161Q、N285Q 和 N346Q 存在于质膜(PM),而 N614Q Klotho-EGFP 仅有少量存在于质膜,大部分蛋白质积聚在 ER 中。Klotho-EGFP N614Q 的蛋白质相互作用组分析表明,它与蛋白酶体相关蛋白质和参与ER蛋白质加工的蛋白质(如热休克蛋白和蛋白质二硫异构酶)的相互作用增加,表明蛋白质折叠受损。共免疫沉淀实验证实了 Klotho-EGFP N614Q 与 ER伴侣的相互作用。有趣的是,尽管 Klotho-EGFP N614Q 在 PM 中的含量很低,但在 FGF23 的存在下,它能有效地诱导 FGF 受体介导的 ERK 激活,这凸显了它在触发下游信号转导方面的功效,即使在 PM 中的含量有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
Celastrol-Loaded Hyaluronic Acid/Cancer Cell Membrane Lipid Nanoparticles for Targeted Hepatocellular Carcinoma Prevention. Correction: Svobodova et al. N6-Adenosine Methylation in RNA and a Reduced m3G/TMG Level in Non-Coding RNAs Appear at Microirradiation-Induced DNA Lesions. Cells 2020, 9, 360. Fish Cell Spheroids, a Promising In Vitro Model to Mimic In Vivo Research: A Review. Initial WNT/β-Catenin or BMP Activation Modulates Inflammatory Response of Mesodermal Progenitors Derived from Human Induced Pluripotent Stem Cells. NKX3-2 Induces Ovarian Cancer Cell Migration by HDAC6-Mediated Repositioning of Lysosomes and Inhibition of Autophagy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1