The journal retracts the article titled "Cycloastragenol, a Triterpenoid Saponin, Regulates Oxidative Stress, Neurotrophic Dysfunctions, Neuroinflammation and Apoptotic Cell Death in Neurodegenerative Conditions" [...].
The journal retracts the article titled "Cycloastragenol, a Triterpenoid Saponin, Regulates Oxidative Stress, Neurotrophic Dysfunctions, Neuroinflammation and Apoptotic Cell Death in Neurodegenerative Conditions" [...].
In the original publication [...].
Skeletal muscle orchestrates a remarkable journey from embryonic formation to age-related decline, yet its cellular intricacies in goats remain largely uncharted. We present the first single-cell RNA sequencing (scRNA-seq) atlas of the longissimus dorsi muscle from goats, profiling 120,944 cells across 14 developmental stages from embryonic day 30 (E30) to 11 years postnatal (Y11). We focused on skeletal muscle satellite cells (MuSCs) and fibro-adipogenic progenitors (FAPs), identifying a unique MuSCs_ACT1_high subpopulation in early embryogenesis and a senescence-associated MuSCs_CDKN1A_high subpopulation in later developmental stages. In FAPs, we characterized the early-stage FAPs_MDFI_high subpopulation with differentiation potential, which further exhibited the capacity to commit to both adipogenic and fibrogenic lineages. Transcription factor analysis revealed strikingly similar regulatory profiles between MuSCs and FAPs, suggesting that these two cell types are governed by shared signaling pathways during development. Cell-cell interaction analysis demonstrated that the DLK1-NOTCH3 ligand-receptor pair plays a critical role in enabling early embryonic FAPs to maintain the quiescent state of MuSCs. This dynamic single-cell transcriptomic atlas, spanning 14 developmental stages of skeletal muscle in ruminants for the first time, provides a valuable theoretical foundation for further elucidating the differentiation of skeletal muscle satellite cells and fibro-adipogenic progenitors in ruminants.
Proteoglycans are macromolecules consisting of a core protein and one or more glycosaminoglycan side chains. Proteoglycans synthesized by vascular endothelial cells modulate various functions such as anticoagulant activity and vascular permeability. We previously reported that some heavy metals interfere with proteoglycan expression, and that organic-inorganic hybrid molecules, such as metal complexes and organometallic compounds, serve as useful tools to analyze proteoglycan synthesis mechanisms. However, the effects of metal compounds lacking electrophilicity on proteoglycan synthesis remain unclear. Au25(SG)18, a nanoscale gold cluster consisting of a metal core protected by gold-glutathione complexes, exhibits extremely low intramolecular polarity. In this study, we investigated the effect of Au25(SG)18 on proteoglycan synthesis in vascular endothelial cells. Au25(SG)18 accumulated significantly in vascular endothelial cells at low cell density and suppressed the expression of perlecan, a major heparan sulfate proteoglycan in cells, by inactivating ADP-ribosylation factor 6 (Arf6). Additionally, Au25(SG)18 reduced the expression of biglycan, a small dermatan sulfate proteoglycan, in vascular endothelial cells at low cell density; however, the underlying mechanisms remain unclear. Overall, our findings suggest that organic-inorganic hybrid molecules regulate the activity of Arf6-mediated protein transport to the extracellular space and that perlecan is regulated through this mechanism, highlighting the importance of Arf6-mediated extracellular transport for maintaining vascular homeostasis.
Porcine epidemic diarrhea virus (PEDV) has emerged as a major pathogen responsible for porcine diarrheal diseases, causing outbreaks of severe diarrhea and high mortality in neonatal piglets, thereby inflicting severe economic losses on the global swine industry. Current commercial PED vaccines, comprising conventional inactivated and live attenuated formulations, have exhibited progressively diminished efficacy in the face of emerging PEDV variants. The development of high-efficiency vaccine platforms is therefore critical for PED control. This study engineered a cellular membrane nanovesicle (CMN)-based vaccine, which differs from existing inactivated or subunit vaccines by presenting the PEDV spike (S) protein on the cell membranes to mimic the bilayer phospholipid structure of the viral envelope. The full-length S protein (FS, aa 19-1309) or a truncated S protein fragment (TS, aa 19-726) was expressed in Expi293F cells, followed by extraction of cell membranes to assemble antigen-displaying CMN vaccines. Compared with commercial live attenuated vaccine, administration of the CMN vaccine elicited high-titer neutralizing antibodies and elevated IFN-γ-producing CD8+ T cells in murine studies. Safety assessments revealed no adverse effects on body weight, hepatic/renal function indices, or histopathological parameters in vaccinated mice. Furthermore, immunization of piglets elicited notable humoral and CD8+ T cell immune responses. Collectively, the strategy of CMN-based vaccine described herein delivers a potential PEDV vaccine platform, thereby offering a novel avenue for next-generation veterinary vaccine development.
Laryngopharyngeal reflux disease (LPRD) results from the retrograde flow of gastric contents into the upper aerodigestive tract, causing epithelial injury. Progress in its management has been limited by the lack of objective biomarkers and reproducible in vivo models. This study aimed to establish a chronic, non-surgical mouse model of LPRD and to investigate the protective effect of N-acetylcysteine (NAC). Female C57BL/6 mice were randomly assigned to three groups: control (standard drinking water), study (acidified water, pH 3.0, for 12 weeks), and treatment (acidified water for 12 weeks plus NAC supplementation during the final 4 weeks). Body weight, food intake, and water consumption were monitored weekly. Pharyngeal tissues were analyzed by immunohistochemistry and Western blotting. Chronic acid exposure resulted in loss of membrane-localized E-cadherin, cytoplasmic redistribution, and upregulation of matrix metalloproteinase-7 (MMP-7). These molecular alterations were accompanied by enhanced phosphorylation of ERK and c-Jun, consistent with activation of the ROS-ERK-c-Jun signaling pathway. NAC supplementation was associated with partial restoration of E-cadherin, reduced MMP-7 expression, and attenuation of ERK/c-Jun phosphorylation. No systemic toxicity or weight loss was observed, indicating good tolerability of the model. This non-surgical ingestion-based model faithfully recapitulates key epithelial features of LPRD and provides a feasible platform for mechanistic investigation and exploratory therapeutic studies. NAC may exert protective effects against acid-induced epithelial injury in this model.
Taurine metabolism is emerging as an important player in cancer progression, yet its precise roles remain incompletely understood. Our study revealed that elevated serum Taurine levels and concomitant upregulation of its transporter, Slc6a6, are associated with enhanced tumor growth. Functionally, Slc6a6 overexpression drives tumor progression in vivo and accelerates cancer cell proliferation in vitro. Mechanistically, we identified a dual pro-oncogenic function for Slc6a6. First, Slc6a6 possesses intrinsic antioxidant regulatory capacity and further enhances cellular redox homeostasis by mediating the uptake of the antioxidant molecule Taurine. Second, beyond its metabolic role, Slc6a6 directly interacts with the cell cycle regulator Rprd1b to promote the G1/S phase transition, leading to uncontrolled proliferation. Clinically, bioinformatics analyses correlate high SLC6A6 expression with poor prognosis in breast cancer patients, underscoring its potential as a therapeutic target.
Glioblastoma (GBM) remains incurable due to its invasive growth and therapeutic resistance. While the neurogenic transcription factor-mediated reprogramming of glioma cells has been reported, pharmacological reprogramming offers a promising alternative due to its potential advantages for clinical translation. Using phenotype-driven screening, we identified a multi-target small-molecule cocktail DLC79 (DAPT, LDN193189, CHIR99021, I-BET762, and Isx9) that effectively reprograms human glioma cells into neuron-like cells by activating endogenous ASCL1 (174.4-fold) and remodeling the transcriptional landscape. This conversion led to the strong upregulation of neuronal markers (e.g., MAP2 and GAD67) and suppression of glial identity. Functionally, DLC79 treatment inhibited glioma malignancy in vitro, impairing proliferation, migration, invasion, and clonogenicity. In a subcutaneous xenograft model, brief pretreatment with DLC79 significantly attenuated the tumorigenic potential of glioma cells, reducing tumor bioluminescence by 56% and tumor mass by 47%. Our study establishes pharmacological reprogramming as a promising anti-glioma strategy that leverages neuronal conversion to reduce oncogenic properties, thereby initiating a novel therapeutic paradigm.
Kidney toxicity remains a major dose-limiting complication of radiation therapy and platinum-based chemotherapy, yet the molecular determinants of renal susceptibility and resilience to these genotoxic treatments are incompletely understood. Podocytes are particularly vulnerable to such insults, and emerging evidence implicates lipid dysregulation in podocyte injury. This study investigated the role of sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B), a podocyte-enriched lipid-modulating enzyme, in radiation- and cisplatin-induced nephrotoxicity. Using a doxycycline-inducible, podocyte-specific SMPDL3B transgenic mouse model, renal injury was assessed following focal kidney irradiation, cisplatin administration, or their combination through functional assays, histopathology, ultrastructural analysis, immunofluorescence, and targeted lipidomics. Combined radiation and cisplatin exposure markedly reduced podocyte SMPDL3B expression, accompanied by podocyte depletion, glomerular basement membrane remodeling, proteinuria, and impaired renal function. These structural and functional abnormalities were associated with the selective accumulation of long-chain ceramide-1-phosphate species. In contrast, podocyte-specific induction of SMPDL3B preserved glomerular architecture, maintained renal function, and prevented pathological ceramide-1-phosphate elevation. Collectively, these findings identify SMPDL3B as a key regulator of podocyte stability and lipid homeostasis during chemoradiation stress. Enhancing SMPDL3B activity may represent a mechanistically grounded strategy to mitigate treatment-induced kidney injury while preserving anticancer efficacy.
The neonatal heart possesses a unique capacity for reparative healing after myocardial injury, unlike the adult heart. While immune cells, particularly T cells, regulate post-infarction inflammation, their role in age-dependent cardiac repair remains unclear. This study aimed to characterize the temporal activation of T cell subsets and their contribution to immune homeostasis and myocardial repair. Myocardial infarction was induced in mice of different ages, and T cell subsets (CD4+ T cells, CD8+ T cells, and CD4+Foxp3+ T [T-reg] cells) were analyzed using flow cytometry and RNA sequencing. Neonatal hearts exhibited CD4+ T cells, CD8+ T cells, and T-reg cells that gradually increased until seven days post-injury. Transcriptome analysis identified Rcn3 as a neonatal-specific, injury-responsive gene in T-reg cells, with minimal induction in adult and aged hearts, promoting a reparative microenvironment and exerting anti-fibrotic effects via the PI3K/Akt pathway. Under endoplasmic reticulum stress, Rcn3 activated unfolded protein response genes, and Rcn3-conditioned media reduced fibrosis-associated gene expression in adult cardiac fibroblasts. In a conditional knockout mouse model (Lck-cre; Rcn3fl/fl), Rcn3 deletion in T cells led to impaired cardiac function recovery and increased fibrosis post-injury. These findings suggest that neonatal T-reg cells play a crucial role in cardiac repair, with Rcn3 as a potential therapeutic target for enhancing immune-mediated cardiac repair and limiting pathological remodeling in the adult heart.

