Molecular Mechanisms of Skatole-Induced Inflammatory Responses in Intestinal Epithelial Caco-2 Cells: Implications for Colorectal Cancer and Inflammatory Bowel Disease.
{"title":"Molecular Mechanisms of Skatole-Induced Inflammatory Responses in Intestinal Epithelial Caco-2 Cells: Implications for Colorectal Cancer and Inflammatory Bowel Disease.","authors":"Katsunori Ishii, Kazuma Naito, Dai Tanaka, Yoshihito Koto, Koichi Kurata, Hidehisa Shimizu","doi":"10.3390/cells13201730","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), in intestinal epithelial cells significantly contribute to inflammatory bowel disease (IBD) and colorectal cancer (CRC). Given our previous findings that TNF-α is upregulated in intestinal epithelial Caco-2 cells induced by skatole, a tryptophan-derived gut microbiota metabolite, the present study aimed to explore the relationship between skatole and IL-6, alongside TNF-α. Skatole elevated the promoter activity of IL-6 as well as TNF-α, and increased IL-6 mRNA expression and protein secretion. In addition to activating NF-κB, the NF-κB inhibitor BAY 11-7082 reduced skatole-induced cell survival and the mRNA expression of IL-6 and TNF-α. NF-κB activation was attenuated by the extracellular signal-regulated kinase (ERK) pathway inhibitor U0126 and the p38 inhibitor SB203580, but not by the c-Jun N-terminal kinase (JNK) inhibitor SP600125. U126 and SB203580 also decreased the skatole-induced increase in IL-6 expression. When skatole-induced AhR activation was inhibited by CH223191, in addition to promoting NF-κB activation, IL-6 expression was enhanced in a manner similar to that previously reported for TNF-α. Taken together, these results suggest that skatole-elicited NF-κB activation induces IL-6 and TNF-α expression, although AhR activation partially suppresses this process. The ability of skatole to increase the expression of IL-6 and TNF-α may significantly affect the development and progression of these diseases. Moreover, the balance between NF-κB and AhR activation appears to govern the skatole-induced increases in IL-6 and TNF-α expression. Therefore, the present findings provide new insights into the mechanisms linking tryptophan-derived gut microbiota metabolites with colorectal disease.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 20","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells13201730","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), in intestinal epithelial cells significantly contribute to inflammatory bowel disease (IBD) and colorectal cancer (CRC). Given our previous findings that TNF-α is upregulated in intestinal epithelial Caco-2 cells induced by skatole, a tryptophan-derived gut microbiota metabolite, the present study aimed to explore the relationship between skatole and IL-6, alongside TNF-α. Skatole elevated the promoter activity of IL-6 as well as TNF-α, and increased IL-6 mRNA expression and protein secretion. In addition to activating NF-κB, the NF-κB inhibitor BAY 11-7082 reduced skatole-induced cell survival and the mRNA expression of IL-6 and TNF-α. NF-κB activation was attenuated by the extracellular signal-regulated kinase (ERK) pathway inhibitor U0126 and the p38 inhibitor SB203580, but not by the c-Jun N-terminal kinase (JNK) inhibitor SP600125. U126 and SB203580 also decreased the skatole-induced increase in IL-6 expression. When skatole-induced AhR activation was inhibited by CH223191, in addition to promoting NF-κB activation, IL-6 expression was enhanced in a manner similar to that previously reported for TNF-α. Taken together, these results suggest that skatole-elicited NF-κB activation induces IL-6 and TNF-α expression, although AhR activation partially suppresses this process. The ability of skatole to increase the expression of IL-6 and TNF-α may significantly affect the development and progression of these diseases. Moreover, the balance between NF-κB and AhR activation appears to govern the skatole-induced increases in IL-6 and TNF-α expression. Therefore, the present findings provide new insights into the mechanisms linking tryptophan-derived gut microbiota metabolites with colorectal disease.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.