Hepatocellular-Carcinoma-Derived Organoids: Innovation in Cancer Research.

IF 5.1 2区 生物学 Q2 CELL BIOLOGY Cells Pub Date : 2024-10-18 DOI:10.3390/cells13201726
Carlo Airola, Maria Pallozzi, Eleonora Cesari, Lucia Cerrito, Leonardo Stella, Claudio Sette, Felice Giuliante, Antonio Gasbarrini, Francesca Romana Ponziani
{"title":"Hepatocellular-Carcinoma-Derived Organoids: Innovation in Cancer Research.","authors":"Carlo Airola, Maria Pallozzi, Eleonora Cesari, Lucia Cerrito, Leonardo Stella, Claudio Sette, Felice Giuliante, Antonio Gasbarrini, Francesca Romana Ponziani","doi":"10.3390/cells13201726","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinomas (HCCs) are highly heterogeneous malignancies. They are characterized by a peculiar tumor microenvironment and dense vascularization. The importance of signaling between immune cells, endothelial cells, and tumor cells leads to the difficult recapitulation of a reliable in vitro HCC model using the conventional two-dimensional cell cultures. The advent of three-dimensional organoid tumor technology has revolutionized our understanding of the pathogenesis and progression of several malignancies by faithfully replicating the original cancer genomic, epigenomic, and microenvironmental landscape. Organoids more closely mimic the in vivo environment and cell interactions, replicating factors such as the spatial organization of cell surface receptors and gene expression, and will probably become an important tool in the choice of therapies and the evaluation of tumor response to treatments. This review aimed to describe the ongoing and potential applications of organoids as an in vitro model for the study of HCC development, its interaction with the host's immunity, the analysis of drug sensitivity tests, and the current limits in this field.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505656/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells13201726","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinomas (HCCs) are highly heterogeneous malignancies. They are characterized by a peculiar tumor microenvironment and dense vascularization. The importance of signaling between immune cells, endothelial cells, and tumor cells leads to the difficult recapitulation of a reliable in vitro HCC model using the conventional two-dimensional cell cultures. The advent of three-dimensional organoid tumor technology has revolutionized our understanding of the pathogenesis and progression of several malignancies by faithfully replicating the original cancer genomic, epigenomic, and microenvironmental landscape. Organoids more closely mimic the in vivo environment and cell interactions, replicating factors such as the spatial organization of cell surface receptors and gene expression, and will probably become an important tool in the choice of therapies and the evaluation of tumor response to treatments. This review aimed to describe the ongoing and potential applications of organoids as an in vitro model for the study of HCC development, its interaction with the host's immunity, the analysis of drug sensitivity tests, and the current limits in this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肝细胞癌衍生有机体:癌症研究的创新。
肝细胞癌(HCC)是一种高度异质性的恶性肿瘤。它们的特点是具有特殊的肿瘤微环境和密集的血管。免疫细胞、内皮细胞和肿瘤细胞之间的信号传递非常重要,这导致使用传统的二维细胞培养法很难再现可靠的体外 HCC 模型。三维类器官肿瘤技术的出现忠实地复制了原始的癌症基因组、表观基因组和微环境,彻底改变了我们对多种恶性肿瘤发病机制和进展的认识。有机体更接近地模拟了体内环境和细胞相互作用,复制了细胞表面受体的空间组织和基因表达等因素,很可能成为选择疗法和评估肿瘤对治疗反应的重要工具。这篇综述旨在描述有机体作为体外模型在研究HCC发展、其与宿主免疫的相互作用、药物敏感性测试分析以及该领域目前的局限性等方面正在进行的和潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
Asparagine614 Determines the Transport and Function of the Murine Anti-Aging Protein Klotho. N6-Methyladenosine RNA Modification Regulates the Differential Muscle Development in Large White and Ningxiang Pigs. Comparative Analysis of Extracellular Vesicles from Cytotoxic CD8+ αβ T Cells and γδ T Cells. Correction: Szymanska et al. The Effect of Visfatin on the Functioning of the Porcine Pituitary Gland: An In Vitro Study. Cells 2023, 12, 2835. DNA-Binding Protein A Is Actively Secreted in a Calcium-and Inflammasome-Dependent Manner and Negatively Influences Tubular Cell Survival.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1