Triel Bonds with Methyl Groups as Electron Donors. A Pentacoordinate Carbon Atom.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2024-10-27 DOI:10.1002/cphc.202400931
Xin Wang, Yuwei Cheng, Qingzhong Li, Steve Scheiner
{"title":"Triel Bonds with Methyl Groups as Electron Donors. A Pentacoordinate Carbon Atom.","authors":"Xin Wang, Yuwei Cheng, Qingzhong Li, Steve Scheiner","doi":"10.1002/cphc.202400931","DOIUrl":null,"url":null,"abstract":"<p><p>The triel bond (TrB) formed between Be(CH3)2/Mg(CH3)2 and TrX3 (Tr = B, Al, and Ga; X = H, F, Cl, Br, and I) is investigated via the MP2/aug-cc-pVTZ(PP) quantum chemical protocol. The C atoms of the methyl groups in M(CH3)2 are characterized by a negative electrostatic potential and act as an electron donor in a triel bond with the π-hole above the Tr atom of planar TrX3. The interaction energy spans a wide range between 2 and 69 kcal/mol. Mg(CH3)2 forms a stronger TrB than does Be(CH3)2, which comports with the more negative electrostatic potential on its methyl groups. Some of the complexes involving Mg display a high degree of transfer of the methyl group from Mg to Tr, which is accompanied by an inversion of the bridging methyl and a sizable pyramidalization of the TrX3 unit. The geometries of these complexes have the properties of the long sought pentacoordinate C which has eluded identification and characterization in the past.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400931"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400931","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The triel bond (TrB) formed between Be(CH3)2/Mg(CH3)2 and TrX3 (Tr = B, Al, and Ga; X = H, F, Cl, Br, and I) is investigated via the MP2/aug-cc-pVTZ(PP) quantum chemical protocol. The C atoms of the methyl groups in M(CH3)2 are characterized by a negative electrostatic potential and act as an electron donor in a triel bond with the π-hole above the Tr atom of planar TrX3. The interaction energy spans a wide range between 2 and 69 kcal/mol. Mg(CH3)2 forms a stronger TrB than does Be(CH3)2, which comports with the more negative electrostatic potential on its methyl groups. Some of the complexes involving Mg display a high degree of transfer of the methyl group from Mg to Tr, which is accompanied by an inversion of the bridging methyl and a sizable pyramidalization of the TrX3 unit. The geometries of these complexes have the properties of the long sought pentacoordinate C which has eluded identification and characterization in the past.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以甲基为电子供体的三硒键。五配位碳原子。
我们通过 MP2/aug-cc-pVTZ(PP)量子化学协议研究了 Be(CH3)2/Mg(CH3)2 和 TrX3(Tr = B、Al 和 Ga;X = H、F、Cl、Br 和 I)之间形成的三硒键(TrB)。M(CH3)2 中甲基的 C 原子具有负静电势,在与平面 TrX3 的 Tr 原子上方的 π 孔形成的三键中充当电子供体。相互作用能的范围很广,介于 2 和 69 kcal/mol 之间。与 Be(CH3)2 相比,Mg(CH3)2 形成的 TrB 更强,这与其甲基上更负的静电势有关。一些涉及镁的配合物显示出甲基从镁向 Tr 的高度转移,同时伴随着桥接甲基的反转和 TrX3 单元的显著金字塔化。这些络合物的几何结构具有长期寻找的五配位 C 的特性,而这种五配位 C 在过去一直未能得到鉴定和表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
Understanding Ion-Specific "Hofmeister" Effects in Enzyme Catalysis Through Using RNase A as a Paradigm Model. Understanding the Effects of Surface and Edge Functionalization on the Mechanical Properties of Graphene and Graphene Oxide. Absorption and Excited-State Coherences of Cryogenically Cold Retinal Protonated Schiff Base in Vacuo. Stable π​ Radical BDPA: Adsorption on Cu(100) and Survival of Spin. What is the exchange-repulsion energy? Insight by partitioning into physically meaningful contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1