{"title":"Optimization of Electrodialysis for Ammonium Removal From NH<sub>4</sub>Cl-Doped Groundwater Samples Using the Response Surface Method.","authors":"Mohamed Hazra, Fatima Zahra Addar, Mustapha Tahaikt, Azzedine Elmidaoui, Mohamed Taky, Sakina Belhamidi","doi":"10.1002/open.202400163","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to optimize ammonium removal from NH<sub>4</sub>Cl-enriched groundwater at different concentrations using an electrodialysis (ED) process. A customized design (CD) based on response surface methodology (RSM) was employed to develop predictive models and improve the performance of the demineralization system. Ion removal efficiency was evaluated in 32 unique experimental configurations, taking into account variations in three input parameters: voltage (A), initial ammonium concentration (B) and demineralization rate (C). These parameters were selected for their impact on two response variables: electric conductivity (Y<sub>1</sub>) and final ammonium concentration (Y<sub>2</sub>). An in-depth analysis of variance (ANOVA) was performed to examine the variables and their interactions. The results indicated that Y<sub>1</sub> was significantly influenced by C, while Y<sub>2</sub> was influenced by B. In addition, the predictive models demonstrated strong correlations, with a coefficient of determination (R<sup>2</sup>) greater than 0.88 for both response variables. The RSM approach applied to optimize the parameters studied identified the following optimum values: 14.17 V for A, 1 mg/L for B and 70 % for C, giving Y<sub>1</sub> of 215.377 μS/cm and Y<sub>2</sub> of 0.279 mg/L.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400163"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400163","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to optimize ammonium removal from NH4Cl-enriched groundwater at different concentrations using an electrodialysis (ED) process. A customized design (CD) based on response surface methodology (RSM) was employed to develop predictive models and improve the performance of the demineralization system. Ion removal efficiency was evaluated in 32 unique experimental configurations, taking into account variations in three input parameters: voltage (A), initial ammonium concentration (B) and demineralization rate (C). These parameters were selected for their impact on two response variables: electric conductivity (Y1) and final ammonium concentration (Y2). An in-depth analysis of variance (ANOVA) was performed to examine the variables and their interactions. The results indicated that Y1 was significantly influenced by C, while Y2 was influenced by B. In addition, the predictive models demonstrated strong correlations, with a coefficient of determination (R2) greater than 0.88 for both response variables. The RSM approach applied to optimize the parameters studied identified the following optimum values: 14.17 V for A, 1 mg/L for B and 70 % for C, giving Y1 of 215.377 μS/cm and Y2 of 0.279 mg/L.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.