Basic design of artificial membrane-less organelles using condensation-prone proteins in plant cells

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2024-10-26 DOI:10.1038/s42003-024-07102-8
Yoshito Koja, Takuya Arakawa, Yusuke Yoritaka, Yu Joshima, Hazuki Kobayashi, Kenta Toda, Shin Takeda
{"title":"Basic design of artificial membrane-less organelles using condensation-prone proteins in plant cells","authors":"Yoshito Koja, Takuya Arakawa, Yusuke Yoritaka, Yu Joshima, Hazuki Kobayashi, Kenta Toda, Shin Takeda","doi":"10.1038/s42003-024-07102-8","DOIUrl":null,"url":null,"abstract":"Membrane-less organelles, formed by the condensation of biomolecules, play a pivotal role in eukaryotes. Artificial membrane-less organelles and condensates are effective tools for the creation of new cellular functions. However, it is poorly understood how to control the properties that affect condensate function, particularly in plants. Here, we report the construction of model artificial condensates using the condensation-prone proteins OsJAZ2 and AtFCA in a transient assay using rice (Oryza sativa) cells, and how condensate properties, such as subcellular localization, protein mobility, and size can be altered. We showed that proteins of interest can be recruited to condensates using nanobodies or chemically induced dimerization. Furthermore, by combining two types of condensation-prone proteins, we demonstrated that artificial hybrid condensates with heterogeneous material properties could be constructed. Finally, we showed that modified artificial condensates can be constructed in transgenic Arabidopsis thaliana plants. These results provide a framework for the basic design of synthetic membrane-less organelles in plants. Studies using condensation-prone proteins suggest that it is possible to construct and combine artificial condensates with various properties in plant cells, providing a framework for the basic design of synthetic membrane-less organelles in plants.","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42003-024-07102-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-07102-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane-less organelles, formed by the condensation of biomolecules, play a pivotal role in eukaryotes. Artificial membrane-less organelles and condensates are effective tools for the creation of new cellular functions. However, it is poorly understood how to control the properties that affect condensate function, particularly in plants. Here, we report the construction of model artificial condensates using the condensation-prone proteins OsJAZ2 and AtFCA in a transient assay using rice (Oryza sativa) cells, and how condensate properties, such as subcellular localization, protein mobility, and size can be altered. We showed that proteins of interest can be recruited to condensates using nanobodies or chemically induced dimerization. Furthermore, by combining two types of condensation-prone proteins, we demonstrated that artificial hybrid condensates with heterogeneous material properties could be constructed. Finally, we showed that modified artificial condensates can be constructed in transgenic Arabidopsis thaliana plants. These results provide a framework for the basic design of synthetic membrane-less organelles in plants. Studies using condensation-prone proteins suggest that it is possible to construct and combine artificial condensates with various properties in plant cells, providing a framework for the basic design of synthetic membrane-less organelles in plants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用植物细胞中易凝结的蛋白质进行人工无膜细胞器的基本设计。
由生物大分子缩聚而成的无膜细胞器在真核生物中发挥着举足轻重的作用。人造无膜细胞器和凝聚体是创造新细胞功能的有效工具。然而,人们对如何控制影响凝聚态功能的特性知之甚少,尤其是在植物中。在这里,我们报告了在使用水稻(Oryza sativa)细胞进行的瞬时试验中,利用易凝集蛋白 OsJAZ2 和 AtFCA 构建人工凝集素模型的情况,以及如何改变凝集素的特性,如亚细胞定位、蛋白流动性和大小。我们的研究表明,相关蛋白质可以通过纳米抗体或化学诱导二聚化的方式被招募到凝聚体中。此外,通过结合两种易凝结的蛋白质,我们证明可以构建具有异质材料特性的人工混合凝结物。最后,我们证明可以在转基因拟南芥植物中构建改良的人工凝聚体。这些结果为植物合成无膜细胞器的基本设计提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Iterative crRNA design and a PAM-free strategy enabled an ultra-specific RPA-CRISPR/Cas12a detection platform. Discovery of a family of menaquinone-targeting cyclic lipodepsipeptides for multidrug-resistant Gram-positive pathogens. KLF13 promotes SLE pathogenesis by modifying chromatin accessibility of key proinflammatory cytokine genes. Mutational signature analyses in multi-child families reveal sources of age-related increases in human germline mutations. Sources of variation in the serum metabolome of female participants of the HUNT2 study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1