Enikő Zakar-Polyák, Attila Csordas, Róbert Pálovics, Csaba Kerepesi
{"title":"Profiling the transcriptomic age of single-cells in humans","authors":"Enikő Zakar-Polyák, Attila Csordas, Róbert Pálovics, Csaba Kerepesi","doi":"10.1038/s42003-024-07094-5","DOIUrl":null,"url":null,"abstract":"Although aging clocks predicting the age of individual organisms have been extensively studied, the age of individual cells remained largely unexplored. Most recently single-cell omics clocks were developed for the mouse, however, extensive profiling the age of human cells is still lacking. To fill this gap, here we use available scRNA-seq data of 1,058,909 blood cells of 508 healthy, human donors (between 19 and 75 years), for developing single-cell transcriptomic clocks and predicting the age of human blood cells. By the application of the proposed cell-type-specific single-cell clocks, our main observations are that (i) transcriptomic age is associated with cellular senescence; (ii) the transcriptomic age of classical monocytes as well as naive B and T cells is decreased in moderate COVID-19 followed by an increase for some cell types in severe COVID-19; and (iii) the human embryo cells transcriptomically rejuvenated at the morulae and blastocyst stages. In summary, here we demonstrate that single-cell transcriptomic clocks are useful tools to investigate aging and rejuvenation at the single-cell level. Single-cell transcriptomic clocks have been developed based on available data to predict the age of human blood cells. The proposed clocks are useful tools to investigate aging and rejuvenation at the single-cell level.","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42003-024-07094-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-07094-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although aging clocks predicting the age of individual organisms have been extensively studied, the age of individual cells remained largely unexplored. Most recently single-cell omics clocks were developed for the mouse, however, extensive profiling the age of human cells is still lacking. To fill this gap, here we use available scRNA-seq data of 1,058,909 blood cells of 508 healthy, human donors (between 19 and 75 years), for developing single-cell transcriptomic clocks and predicting the age of human blood cells. By the application of the proposed cell-type-specific single-cell clocks, our main observations are that (i) transcriptomic age is associated with cellular senescence; (ii) the transcriptomic age of classical monocytes as well as naive B and T cells is decreased in moderate COVID-19 followed by an increase for some cell types in severe COVID-19; and (iii) the human embryo cells transcriptomically rejuvenated at the morulae and blastocyst stages. In summary, here we demonstrate that single-cell transcriptomic clocks are useful tools to investigate aging and rejuvenation at the single-cell level. Single-cell transcriptomic clocks have been developed based on available data to predict the age of human blood cells. The proposed clocks are useful tools to investigate aging and rejuvenation at the single-cell level.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.