Regulating the metabolic flux of pyruvate dehydrogenase bypass to enhance lipid production in Saccharomyces cerevisiae

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2024-10-26 DOI:10.1038/s42003-024-07103-7
Cairong Lei, Xiaopeng Guo, Miaomiao Zhang, Xiang Zhou, Nan Ding, Junle Ren, Meihan Liu, Chenglin Jia, Yajuan Wang, Jingru Zhao, Ziyi Dong, Dong Lu
{"title":"Regulating the metabolic flux of pyruvate dehydrogenase bypass to enhance lipid production in Saccharomyces cerevisiae","authors":"Cairong Lei, Xiaopeng Guo, Miaomiao Zhang, Xiang Zhou, Nan Ding, Junle Ren, Meihan Liu, Chenglin Jia, Yajuan Wang, Jingru Zhao, Ziyi Dong, Dong Lu","doi":"10.1038/s42003-024-07103-7","DOIUrl":null,"url":null,"abstract":"To achieve high efficiency in microbial cell factories, it is crucial to redesign central carbon fluxes to ensure an adequate supply of precursors for producing high-value compounds. In this study, we employed a multi-omics approach to rearrange the central carbon flux of the pyruvate dehydrogenase (PDH) bypass, thereby enhancing the supply of intermediate precursors, specifically acetyl-CoA. This enhancement aimed to improve the biosynthesis of acetyl-CoA-derived compounds, such as terpenoids and fatty acid-derived molecules, in Saccharomyces cerevisiae. Through transcriptomic and lipidomic analyses, we identified ALD4 as a key regulatory gene influencing lipid metabolism. Genetic validation demonstrated that overexpression of the mitochondrial acetaldehyde dehydrogenase (ALDH) gene ALD4 resulted in a 20.1% increase in lipid production. This study provides theoretical support for optimising the performance of S. cerevisiae as a “cell factory” for the production of commercial compounds. The carbon flux rearrangement based on PDH bypass enhances the accumulation of acetyl-CoA and promotes the synthesis of lipid compounds downstream in Saccharomyces cerevisiae.","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-07103-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve high efficiency in microbial cell factories, it is crucial to redesign central carbon fluxes to ensure an adequate supply of precursors for producing high-value compounds. In this study, we employed a multi-omics approach to rearrange the central carbon flux of the pyruvate dehydrogenase (PDH) bypass, thereby enhancing the supply of intermediate precursors, specifically acetyl-CoA. This enhancement aimed to improve the biosynthesis of acetyl-CoA-derived compounds, such as terpenoids and fatty acid-derived molecules, in Saccharomyces cerevisiae. Through transcriptomic and lipidomic analyses, we identified ALD4 as a key regulatory gene influencing lipid metabolism. Genetic validation demonstrated that overexpression of the mitochondrial acetaldehyde dehydrogenase (ALDH) gene ALD4 resulted in a 20.1% increase in lipid production. This study provides theoretical support for optimising the performance of S. cerevisiae as a “cell factory” for the production of commercial compounds. The carbon flux rearrangement based on PDH bypass enhances the accumulation of acetyl-CoA and promotes the synthesis of lipid compounds downstream in Saccharomyces cerevisiae.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节丙酮酸脱氢酶旁路的代谢通量以提高酿酒酵母的脂质产量。
为了实现微生物细胞工厂的高效率,重新设计中心碳通量以确保生产高价值化合物的前体供应充足至关重要。在这项研究中,我们采用了一种多组学方法来重新安排丙酮酸脱氢酶(PDH)旁路的中心碳通量,从而增强中间前体(特别是乙酰-CoA)的供应。这一改进旨在提高乙酰-CoA 衍生化合物(如萜类化合物和脂肪酸衍生分子)在酿酒酵母中的生物合成。通过转录组学和脂质组学分析,我们发现 ALD4 是影响脂质代谢的关键调控基因。遗传验证表明,过量表达线粒体乙醛脱氢酶(ALDH)基因 ALD4 可使脂质产量增加 20.1%。这项研究为优化 S. cerevisiae 作为生产商业化合物的 "细胞工厂 "的性能提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Iterative crRNA design and a PAM-free strategy enabled an ultra-specific RPA-CRISPR/Cas12a detection platform. Discovery of a family of menaquinone-targeting cyclic lipodepsipeptides for multidrug-resistant Gram-positive pathogens. KLF13 promotes SLE pathogenesis by modifying chromatin accessibility of key proinflammatory cytokine genes. Mutational signature analyses in multi-child families reveal sources of age-related increases in human germline mutations. Sources of variation in the serum metabolome of female participants of the HUNT2 study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1