Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis.

IF 6 2区 生物学 Q1 MICROBIOLOGY Critical Reviews in Microbiology Pub Date : 2024-10-23 DOI:10.1080/1040841X.2024.2418125
Jyoti Sankar Prusty, Ashwini Kumar, Awanish Kumar
{"title":"Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis.","authors":"Jyoti Sankar Prusty, Ashwini Kumar, Awanish Kumar","doi":"10.1080/1040841X.2024.2418125","DOIUrl":null,"url":null,"abstract":"<p><p><i>Candida</i> infections, particularly invasive candidiasis, pose a serious global health threat. <i>Candida albicans</i> is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by <i>Candida</i> species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-37"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/1040841X.2024.2418125","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗真菌肽:在治疗念珠菌病方面具有令人着迷的治疗前景的新兴类别。
念珠菌感染,尤其是侵袭性念珠菌病,对全球健康构成严重威胁。白色念珠菌是引起念珠菌病最普遍的菌种,对唑类、棘白菌素类、多烯类和氟嘧啶类等主要抗真菌药物的耐药性已经出现。这种日益增长的多药耐药性(MDR)使治疗方案变得更加复杂,凸显了对新型治疗方法的需求。抗真菌肽(AFPs)因其多样的结构和功能,作为新型抗真菌剂的潜力正日益得到认可。这些天然肽或重组肽能有效针对真菌的毒力和存活能力,使它们成为未来抗真菌开发的候选药物。本综述探讨了念珠菌引起的感染、目前抗真菌治疗的局限性以及 AFPs 的治疗潜力。它强调了确定新型 AFP 靶点及其生产对于推进治疗策略的重要性。通过讨论 AFPs 的治疗发展,该综述旨在吸引研究人员关注这一前景广阔的领域。整合有关 AFPs 的知识可为开发具有广谱活性、降低毒性、靶向作用和限制病原真菌抗药性机制的新型抗真菌药物铺平道路,从而为抗真菌疗法带来重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Critical Reviews in Microbiology
Critical Reviews in Microbiology 生物-微生物学
CiteScore
14.70
自引率
0.00%
发文量
99
期刊介绍: Critical Reviews in Microbiology is an international, peer-reviewed journal that publishes comprehensive reviews covering all areas of microbiology relevant to humans and animals, including medical and veterinary microbiology, public health and environmental microbiology. These may include subjects related to microbial molecular biology, immunopathogenicity, physiology, biochemistry, structure, and epidemiology. Of particular interest are reviews covering clinical aspects of bacterial, virological, fungal and parasitic diseases. All reviews must be analytical, comprehensive, and balanced in nature. Editors welcome uninvited submissions, as well as suggested topics for reviews accompanied by an abstract.
期刊最新文献
Extracellular vesicle production by oral bacteria related to dental caries and periodontal disease: role in microbe-host and interspecies interactions. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and emerging treatment. Targeting bioinformatics tools to study the dissemination and spread of antibiotic resistant genes in the environment and clinical settings. The role of bacterial extracellular vesicles in promoting antibiotic resistance. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1