首页 > 最新文献

Critical Reviews in Microbiology最新文献

英文 中文
Ureaplasma infections: update on epidemiology, antimicrobial resistance, and pathogenesis. 解脲脲原体感染:流行病学、抗菌药耐药性和致病机理的最新进展。
IF 6 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-05-24 DOI: 10.1080/1040841X.2024.2349556
Wenwen Liu, Ting Yang, Yingying Kong, Xinyou Xie, Zhi Ruan

Human Ureaplasma species are being increasingly recognized as opportunistic pathogens in human genitourinary tract infections, infertility, adverse pregnancy, neonatal morbidities, and other adult invasive infections. Although some general reviews have focused on the detection and clinical manifestations of Ureaplasma spp., the molecular epidemiology, antimicrobial resistance, and pathogenesis of Ureaplasma spp. have not been adequately explained. The purpose of this review is to offer valuable insights into the current understanding and future research perspectives of the molecular epidemiology, antimicrobial resistance, and pathogenesis of human Ureaplasma infections. This review summarizes the conventional culture and detection methods and the latest molecular identification technologies for Ureaplasma spp. We also reviewed the global prevalence and mechanisms of antibiotic resistance for Ureaplasma spp. Aside from regular antibiotics, novel antibiotics with outstanding in vitro antimicrobial activity against Ureaplasma spp. are described. Furthermore, we discussed the pathogenic mechanisms of Ureaplasma spp., including adhesion, proinflammatory effects, cytotoxicity, and immune escape effects, from the perspectives of pathology, related molecules, and genetics.

人们越来越认识到,人类解脲支原体是导致人类泌尿生殖道感染、不孕症、不良妊娠、新生儿疾病和其他成人侵入性感染的机会性病原体。尽管一些综述侧重于解脲支原体的检测和临床表现,但对其分子流行病学、抗菌药耐药性和致病机理的解释并不充分。本综述旨在对人类解脲支原体感染的分子流行病学、抗菌药耐药性和发病机制的现有认识和未来研究前景提供有价值的见解。本综述总结了解脲支原体的传统培养和检测方法以及最新的分子鉴定技术,还回顾了解脲支原体的全球流行情况和抗生素耐药性机制。此外,我们还从病理学、相关分子和遗传学的角度探讨了解脲支原体的致病机制,包括粘附、促炎作用、细胞毒性和免疫逃逸效应。
{"title":"<i>Ureaplasma</i> infections: update on epidemiology, antimicrobial resistance, and pathogenesis.","authors":"Wenwen Liu, Ting Yang, Yingying Kong, Xinyou Xie, Zhi Ruan","doi":"10.1080/1040841X.2024.2349556","DOIUrl":"10.1080/1040841X.2024.2349556","url":null,"abstract":"<p><p>Human <i>Ureaplasma</i> species are being increasingly recognized as opportunistic pathogens in human genitourinary tract infections, infertility, adverse pregnancy, neonatal morbidities, and other adult invasive infections. Although some general reviews have focused on the detection and clinical manifestations of <i>Ureaplasma</i> spp., the molecular epidemiology, antimicrobial resistance, and pathogenesis of <i>Ureaplasma</i> spp. have not been adequately explained. The purpose of this review is to offer valuable insights into the current understanding and future research perspectives of the molecular epidemiology, antimicrobial resistance, and pathogenesis of human <i>Ureaplasma</i> infections. This review summarizes the conventional culture and detection methods and the latest molecular identification technologies for <i>Ureaplasma</i> spp. We also reviewed the global prevalence and mechanisms of antibiotic resistance for <i>Ureaplasma</i> spp. Aside from regular antibiotics, novel antibiotics with outstanding <i>in vitro</i> antimicrobial activity against <i>Ureaplasma</i> spp. are described. Furthermore, we discussed the pathogenic mechanisms of <i>Ureaplasma</i> spp., including adhesion, proinflammatory effects, cytotoxicity, and immune escape effects, from the perspectives of pathology, related molecules, and genetics.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"317-347"},"PeriodicalIF":6.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying the panorama of potential pandemic pathogens and their key characteristics: a systematic scoping review. 确定潜在大流行病病原体的全貌及其主要特征:系统性范围审查。
IF 6 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-06-20 DOI: 10.1080/1040841X.2024.2360407
Yara Khachab, Antoine Saab, Christo El Morr, Yahya El-Lahib, Elie Salem Sokhn

The globe has recently seen several terrifying pandemics and outbreaks, underlining the ongoing danger presented by infectious microorganisms. This literature review aims to explore the wide range of infections that have the potential to lead to pandemics in the present and the future and pave the way to the conception of epidemic early warning systems. A systematic review was carried out to identify and compile data on infectious agents known to cause pandemics and those that pose future concerns. One hundred and fifteen articles were included in the review. They provided insights on 25 pathogens that could start or contribute to creating pandemic situations. Diagnostic procedures, clinical symptoms, and infection transmission routes were analyzed for each of these pathogens. Each infectious agent's potential is discussed, shedding light on the crucial aspects that render them potential threats to the future. This literature review provides insights for policymakers, healthcare professionals, and researchers in their quest to identify potential pandemic pathogens, and in their efforts to enhance pandemic preparedness through building early warning systems for continuous epidemiological monitoring.

全球最近发生了几起可怕的大流行病和疫情爆发,凸显了传染性微生物带来的持续危险。本文献综述旨在探讨当前和未来有可能导致大流行病的各种传染病,并为流行病预警系统的构想铺平道路。我们进行了一次系统性综述,以确定和汇编关于已知会导致大流行病的传染病病原体和那些会引起未来担忧的传染病病原体的数据。有 115 篇文章被纳入审查范围。这些文章对 25 种可能引发或促成大流行的病原体进行了深入分析。对每种病原体的诊断程序、临床症状和感染传播途径进行了分析。讨论了每种传染病病原体的潜力,揭示了使其成为未来潜在威胁的关键因素。这篇文献综述为政策制定者、医疗保健专业人员和研究人员提供了见解,帮助他们识别潜在的大流行病病原体,并通过建立早期预警系统进行持续的流行病学监测,努力提高大流行病的防范能力。
{"title":"Identifying the panorama of potential pandemic pathogens and their key characteristics: a systematic scoping review.","authors":"Yara Khachab, Antoine Saab, Christo El Morr, Yahya El-Lahib, Elie Salem Sokhn","doi":"10.1080/1040841X.2024.2360407","DOIUrl":"10.1080/1040841X.2024.2360407","url":null,"abstract":"<p><p>The globe has recently seen several terrifying pandemics and outbreaks, underlining the ongoing danger presented by infectious microorganisms. This literature review aims to explore the wide range of infections that have the potential to lead to pandemics in the present and the future and pave the way to the conception of epidemic early warning systems. A systematic review was carried out to identify and compile data on infectious agents known to cause pandemics and those that pose future concerns. One hundred and fifteen articles were included in the review. They provided insights on 25 pathogens that could start or contribute to creating pandemic situations. Diagnostic procedures, clinical symptoms, and infection transmission routes were analyzed for each of these pathogens. Each infectious agent's potential is discussed, shedding light on the crucial aspects that render them potential threats to the future. This literature review provides insights for policymakers, healthcare professionals, and researchers in their quest to identify potential pandemic pathogens, and in their efforts to enhance pandemic preparedness through building early warning systems for continuous epidemiological monitoring.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"348-368"},"PeriodicalIF":6.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid diagnosis and precision treatment of Helicobacter pylori infection in clinical settings. 在临床环境中快速诊断和精确治疗幽门螺旋杆菌感染。
IF 6 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-06-24 DOI: 10.1080/1040841X.2024.2364194
Zeeshan Umar, Jia-Wei Tang, Barry J Marshall, Alfred Chin Yen Tay, Liang Wang

Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of approximately half of the worldwide population, with higher prevalence in densely populated areas like Asia, the Caribbean, Latin America, and Africa. H. pylori infections range from asymptomatic cases to potentially fatal diseases, including peptic ulcers, chronic gastritis, and stomach adenocarcinoma. The management of these conditions has become more difficult due to the rising prevalence of drug-resistant H. pylori infections, which ultimately lead to gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. In 1994, the International Agency for Research on Cancer (IARC) categorized H. pylori as a Group I carcinogen, contributing to approximately 780,000 cancer cases annually. Antibiotic resistance against drugs used to treat H. pylori infections ranges between 15% and 50% worldwide, with Asian countries having exceptionally high rates. This review systematically examines the impacts of H. pylori infection, the increasing prevalence of antibiotic resistance, and the urgent need for accurate diagnosis and precision treatment. The present status of precision treatment strategies and prospective approaches for eradicating infections caused by antibiotic-resistant H. pylori will also be evaluated.

幽门螺杆菌是一种革兰氏阴性菌,在全球约一半人口的胃部定植,在亚洲、加勒比海、拉丁美洲和非洲等人口稠密地区发病率更高。幽门螺杆菌感染的范围从无症状病例到可能致命的疾病,包括消化性溃疡、慢性胃炎和胃腺癌。由于抗药性幽门螺杆菌感染的发病率不断上升,最终导致胃癌和粘膜相关淋巴组织(MALT)淋巴瘤,这些疾病的治疗变得更加困难。1994 年,国际癌症研究机构(IARC)将幽门螺杆菌列为 I 类致癌物,每年导致约 78 万例癌症病例。全世界用于治疗幽门螺杆菌感染的抗生素耐药性介于 15%至 50%之间,亚洲国家的耐药性特别高。本综述系统地探讨了幽门螺杆菌感染的影响、抗生素耐药性的日益普遍以及准确诊断和精准治疗的迫切需求。此外,还将评估精准治疗策略的现状以及根除耐抗生素幽门螺杆菌感染的前瞻性方法。
{"title":"Rapid diagnosis and precision treatment of <i>Helicobacter pylori</i> infection in clinical settings.","authors":"Zeeshan Umar, Jia-Wei Tang, Barry J Marshall, Alfred Chin Yen Tay, Liang Wang","doi":"10.1080/1040841X.2024.2364194","DOIUrl":"10.1080/1040841X.2024.2364194","url":null,"abstract":"<p><p><i>Helicobacter pylori</i> is a gram-negative bacterium that colonizes the stomach of approximately half of the worldwide population, with higher prevalence in densely populated areas like Asia, the Caribbean, Latin America, and Africa. <i>H. pylori</i> infections range from asymptomatic cases to potentially fatal diseases, including peptic ulcers, chronic gastritis, and stomach adenocarcinoma. The management of these conditions has become more difficult due to the rising prevalence of drug-resistant <i>H. pylori</i> infections, which ultimately lead to gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. In 1994, the International Agency for Research on Cancer (IARC) categorized <i>H. pylori</i> as a Group I carcinogen, contributing to approximately 780,000 cancer cases annually. Antibiotic resistance against drugs used to treat <i>H. pylori</i> infections ranges between 15% and 50% worldwide, with Asian countries having exceptionally high rates. This review systematically examines the impacts of <i>H. pylori</i> infection, the increasing prevalence of antibiotic resistance, and the urgent need for accurate diagnosis and precision treatment. The present status of precision treatment strategies and prospective approaches for eradicating infections caused by antibiotic-resistant <i>H. pylori</i> will also be evaluated.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"369-398"},"PeriodicalIF":6.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disrupting the bacterial language: quorum quenching and its applications.
IF 6 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-02-20 DOI: 10.1080/1040841X.2025.2466472
Yeting Tu, Hanyu Li, Jiachen Huo, Lichen Gou, Xiang Wen, Xiaomin Yu, Xiaorui Zhang, Jumei Zeng, Yuqing Li

Quorum sensing (QS) is a bacterial communication method closely linked with population density and regulates biofilm formation and the secretion of virulence factors through the release, recognition, and prompt response to small molecule signals. At low cell density, each bacterium produces a low concentration of QS signals that diffuse or are actively transported into the external environment. The accumulated QS signals in the external environment reach a threshold concentration when the bacterial population attains a certain density, enabling effective recognition and interaction of bacterial QS signals with their receptors. This leads to coordinated gene expression and various biological activities across the bacterial population. Targeting the QS system presents a promising strategy to hinder biofilm formation and virulence factor secretion, providing a potential approach to control bacterial growth and reproduction. This study aims to analyze the intercellular mechanisms of quorum quenching (QQ), which focuses on disrupting bacterial signal molecules to keep their concentration below the threshold and preventing the expression of specific pathogenic factors. The applications of QQ in different fields are also reviewed, underscoring its potential as a novel treatment for bacterial infections.

{"title":"Disrupting the bacterial language: quorum quenching and its applications.","authors":"Yeting Tu, Hanyu Li, Jiachen Huo, Lichen Gou, Xiang Wen, Xiaomin Yu, Xiaorui Zhang, Jumei Zeng, Yuqing Li","doi":"10.1080/1040841X.2025.2466472","DOIUrl":"https://doi.org/10.1080/1040841X.2025.2466472","url":null,"abstract":"<p><p>Quorum sensing (QS) is a bacterial communication method closely linked with population density and regulates biofilm formation and the secretion of virulence factors through the release, recognition, and prompt response to small molecule signals. At low cell density, each bacterium produces a low concentration of QS signals that diffuse or are actively transported into the external environment. The accumulated QS signals in the external environment reach a threshold concentration when the bacterial population attains a certain density, enabling effective recognition and interaction of bacterial QS signals with their receptors. This leads to coordinated gene expression and various biological activities across the bacterial population. Targeting the QS system presents a promising strategy to hinder biofilm formation and virulence factor secretion, providing a potential approach to control bacterial growth and reproduction. This study aims to analyze the intercellular mechanisms of quorum quenching (QQ), which focuses on disrupting bacterial signal molecules to keep their concentration below the threshold and preventing the expression of specific pathogenic factors. The applications of QQ in different fields are also reviewed, underscoring its potential as a novel treatment for bacterial infections.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-15"},"PeriodicalIF":6.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential health benefits of lactoferrin and derived peptides - how to qualify as a medical device?
IF 6 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-02-18 DOI: 10.1080/1040841X.2025.2466465
Carlo Brouwer, Mick M Welling, Saleh Alwasel, Teun Boekhout

ABSTRACTsLactoferrin (LF) is a glycoprotein, a member of the transferrin family, and is present in a variety of secretory fluids, including milk, saliva, tears, and mucosal secretions. Iron binding, immunological regulation, antibacterial action, and intestinal nutrition absorption are only a few of its important biological roles. Although much research has been done on human lactoferrin (hLF), LF derived from different animals is equally essential for physiology and health. Depending on the intended application and mechanism of action, goods containing LF and its peptide derivatives may be classified as medical devices under FDA rules or EU Directives. For EU and FDA regulations, a product may be categorized as a medical device if it primarily provides antimicrobial or health advantages. However, LFs are not considered as medical device when used as a food addition or supplement without particular medicinal claims. Safety and efficacy data are examined for regulatory approval in this category to guarantee its appropriate usage and usefulness in clinical settings. When utilized in various medicinal applications, including wound healing, gastrointestinal problems, and immune system stimulation, the complex nature and potential health advantages of LFs and their derivatives would be consistent with their categorization as a class II medical device. The role of LFs of several species (especially cameloids) is discussed in this paper as biological products with particular biological activities and intended medical applications, where LF satisfies the requirements to be classified as a class II medical device.

{"title":"Potential health benefits of lactoferrin and derived peptides - how to qualify as a medical device?","authors":"Carlo Brouwer, Mick M Welling, Saleh Alwasel, Teun Boekhout","doi":"10.1080/1040841X.2025.2466465","DOIUrl":"https://doi.org/10.1080/1040841X.2025.2466465","url":null,"abstract":"<p><p>ABSTRACTsLactoferrin (LF) is a glycoprotein, a member of the transferrin family, and is present in a variety of secretory fluids, including milk, saliva, tears, and mucosal secretions. Iron binding, immunological regulation, antibacterial action, and intestinal nutrition absorption are only a few of its important biological roles. Although much research has been done on human lactoferrin (hLF), LF derived from different animals is equally essential for physiology and health. Depending on the intended application and mechanism of action, goods containing LF and its peptide derivatives may be classified as medical devices under FDA rules or EU Directives. For EU and FDA regulations, a product may be categorized as a medical device if it primarily provides antimicrobial or health advantages. However, LFs are not considered as medical device when used as a food addition or supplement without particular medicinal claims. Safety and efficacy data are examined for regulatory approval in this category to guarantee its appropriate usage and usefulness in clinical settings. When utilized in various medicinal applications, including wound healing, gastrointestinal problems, and immune system stimulation, the complex nature and potential health advantages of LFs and their derivatives would be consistent with their categorization as a class II medical device. The role of LFs of several species (especially cameloids) is discussed in this paper as biological products with particular biological activities and intended medical applications, where LF satisfies the requirements to be classified as a class II medical device.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-25"},"PeriodicalIF":6.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multifarious bacterial surface display: potential platform for biotechnological applications.
IF 6 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-02-16 DOI: 10.1080/1040841X.2025.2461054
Pearl John, Srineevas Sriram, Chandresh Palanichamy, P T Subash, C Sudandiradoss

Bacterial-cell surface display represents a novel field of protein engineering, which is grounds for presenting recombinant proteins or peptides on the surface of host cells. This technique is primarily used for endowing cellular activity on the host cells and enables several biotechnological applications. In this review, we comprehensively summarize the speciality of bacterial surface display, specifically in gram-positive and gram-negative organisms and then we depict the practical cases to show the importance of bacterial cell surface display in biomedicine and bioremediation domains. We manifest that among other display systems such as phages and ribosomes, the cell surface display using bacterial cells can be used to avoid the loss of combinatorial protein libraries and also open the possibility of isolating target-binding variants using high-throughput selection platforms. Thus, it is becoming a robust tool for functionalizing microbes to serve as a potential implement for various bioengineering purposes.

{"title":"A multifarious bacterial surface display: potential platform for biotechnological applications.","authors":"Pearl John, Srineevas Sriram, Chandresh Palanichamy, P T Subash, C Sudandiradoss","doi":"10.1080/1040841X.2025.2461054","DOIUrl":"https://doi.org/10.1080/1040841X.2025.2461054","url":null,"abstract":"<p><p>Bacterial-cell surface display represents a novel field of protein engineering, which is grounds for presenting recombinant proteins or peptides on the surface of host cells. This technique is primarily used for endowing cellular activity on the host cells and enables several biotechnological applications. In this review, we comprehensively summarize the speciality of bacterial surface display, specifically in gram-positive and gram-negative organisms and then we depict the practical cases to show the importance of bacterial cell surface display in biomedicine and bioremediation domains. We manifest that among other display systems such as phages and ribosomes, the cell surface display using bacterial cells can be used to avoid the loss of combinatorial protein libraries and also open the possibility of isolating target-binding variants using high-throughput selection platforms. Thus, it is becoming a robust tool for functionalizing microbes to serve as a potential implement for various bioengineering purposes.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-26"},"PeriodicalIF":6.0,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143432504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current developments and prospects of the antibiotic delivery systems. 抗生素输送系统的发展现状和前景。
IF 6 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-02-29 DOI: 10.1080/1040841X.2024.2321480
Kusum Kharga, Shubhang Jha, Tanvi Vishwakarma, Lokender Kumar

Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.

自二十世纪发现抗生素以来,抗生素一直是治疗细菌感染的基石。由于基因组的可塑性和生物膜的发展,细菌对抗生素产生了抗药性,这引起了轩然大波,使得目前的抗生素疗法失效,从而促使人们开发创新的治疗方法。细菌耐药性的产生进一步加剧了抗生素治疗的临床失败,这通常与抗生素的生物利用度低、副作用大、在感染部位的渗透和蓄积能力差有关。在这篇综述中,我们将重点介绍嗜肽酶、抗体、细胞穿透肽、抗菌肽、噬菌体和纳米颗粒的潜在用途,它们可以穿过不透水的生物膜偷运抗生素,以达到抗生素的治疗相关浓度并对抗抗菌药耐药性(AMR)。我们将讨论每种给药系统发挥作用的一般机制,以及如何根据抗生素耐药性的基本机制范例来定制抗生素给药系统。
{"title":"Current developments and prospects of the antibiotic delivery systems.","authors":"Kusum Kharga, Shubhang Jha, Tanvi Vishwakarma, Lokender Kumar","doi":"10.1080/1040841X.2024.2321480","DOIUrl":"10.1080/1040841X.2024.2321480","url":null,"abstract":"<p><p>Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms <i>via</i> which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"44-83"},"PeriodicalIF":6.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Botanicals as promising antimicrobial agents for enhancing oral health: a comprehensive review. 植物药作为有望改善口腔健康的抗菌剂:综合综述。
IF 6 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-03-28 DOI: 10.1080/1040841X.2024.2321489
Ekta Narwal, Jairam Choudhary, Manoj Kumar, Ryszard Amarowicz, Sunil Kumar, Radha, Deepak Chandran, Sangram Dhumal, Surinder Singh, Marisennayya Senapathy, Sureshkumar Rajalingam, Muthamilselvan Muthukumar, Mohamed Mekhemar

The mouth houses the second largest diversity of microorganisms in the body, harboring more than 700 bacterial species colonizing the soft mucosa and hard tooth surfaces. Microbes are the cause of several health-related problems, such as dental carries, gingivitis, periodontitis, etc., in the mouth across different age groups and socioeconomic/demographic groups. Oral infections are major health problems that affect the standard of living. Compromised oral health is related to chronic conditions and systemic disorders. Microbes responsible for dental caries are acid-producing and aciduric Gram-positive bacteria (Streptococci, Lactobacilli). Gram-negative bacteria (Porphyromonas, Prevotella, Actinobacillus, and Fusobacterium) capable of growing in anaerobic environments are responsible for periodontal diseases. Due to the high prevalence of oral diseases, negative effects associated with the use of antimicrobial agents and increased antibiotic resistance in oral pathogens, suitable alternative methods (effective, economical and safe) to suppress microbes disturbing oral health need to be adopted. Side effects associated with the chemical antimicrobial agents are vomiting, diarrhea and tooth staining. Several researchers have studied the antimicrobial properties of plant extracts and phytochemicals and have used them as indigenous practices to control several infections. Therefore, phytochemicals extracted from plants can be suitable alternatives. This review focuses on the various phytochemical/plant extracts suppressing the growth of oral pathogens either by preventing their attachment to the surfaces or by preventing biofilm formation or other mechanisms.

口腔是人体中微生物种类第二多的地方,有 700 多种细菌定植于软粘膜和硬牙齿表面。微生物是导致不同年龄组和社会经济/人口群体口腔出现牙结石、牙龈炎、牙周炎等多种健康相关问题的原因。口腔感染是影响生活水平的主要健康问题。口腔健康受损与慢性病和全身性疾病有关。导致龋齿的微生物是产酸和酸尿性革兰氏阳性细菌(链球菌、乳酸杆菌)。能够在厌氧环境中生长的革兰氏阴性细菌(卟啉单胞菌、普雷沃特氏菌、放线菌和镰刀菌)是牙周病的罪魁祸首。由于口腔疾病的高发病率、使用抗菌剂带来的负面影响以及口腔病原体对抗生素耐药性的增加,需要采用适当的替代方法(有效、经济、安全)来抑制干扰口腔健康的微生物。化学抗菌剂的副作用包括呕吐、腹泻和牙齿染色。一些研究人员已经对植物提取物和植物化学物质的抗菌特性进行了研究,并将其用作控制多种感染的本土疗法。因此,从植物中提取的植物化学物质可以作为合适的替代品。本综述将重点介绍各种植物化学物质/植物提取物通过防止病原体附着于牙面、防止生物膜形成或其他机制来抑制口腔病原体的生长。
{"title":"Botanicals as promising antimicrobial agents for enhancing oral health: a comprehensive review.","authors":"Ekta Narwal, Jairam Choudhary, Manoj Kumar, Ryszard Amarowicz, Sunil Kumar, Radha, Deepak Chandran, Sangram Dhumal, Surinder Singh, Marisennayya Senapathy, Sureshkumar Rajalingam, Muthamilselvan Muthukumar, Mohamed Mekhemar","doi":"10.1080/1040841X.2024.2321489","DOIUrl":"10.1080/1040841X.2024.2321489","url":null,"abstract":"<p><p>The mouth houses the second largest diversity of microorganisms in the body, harboring more than 700 bacterial species colonizing the soft mucosa and hard tooth surfaces. Microbes are the cause of several health-related problems, such as dental carries, gingivitis, periodontitis, etc., in the mouth across different age groups and socioeconomic/demographic groups. Oral infections are major health problems that affect the standard of living. Compromised oral health is related to chronic conditions and systemic disorders. Microbes responsible for dental caries are acid-producing and aciduric Gram-positive bacteria (Streptococci, Lactobacilli). Gram-negative bacteria (Porphyromonas, Prevotella, Actinobacillus, and Fusobacterium) capable of growing in anaerobic environments are responsible for periodontal diseases. Due to the high prevalence of oral diseases, negative effects associated with the use of antimicrobial agents and increased antibiotic resistance in oral pathogens, suitable alternative methods (effective, economical and safe) to suppress microbes disturbing oral health need to be adopted. Side effects associated with the chemical antimicrobial agents are vomiting, diarrhea and tooth staining. Several researchers have studied the antimicrobial properties of plant extracts and phytochemicals and have used them as indigenous practices to control several infections. Therefore, phytochemicals extracted from plants can be suitable alternatives. This review focuses on the various phytochemical/plant extracts suppressing the growth of oral pathogens either by preventing their attachment to the surfaces or by preventing biofilm formation or other mechanisms.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"84-107"},"PeriodicalIF":6.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis. 激活溶酶体损伤反应和选择性自噬:半凝集素、TRIM 蛋白和 CGAS-STING1 在提供抗结核分枝杆菌免疫力方面的协调作用。
IF 6 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-03-12 DOI: 10.1080/1040841X.2024.2321494
Asrar Ahmad Malik, Mohd Shariq, Javaid Ahmad Sheikh, Sheeba Zarin, Yashika Ahuja, Haleema Fayaz, Anwar Alam, Nasreen Z Ehtesham, Seyed E Hasnain

Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.

自噬是一种重要的免疫防御机制,它通过在应激和病原体攻击期间维持细胞生理机能来控制 M. tb 的存活和致病。E3-Ub 连接酶(PRKN、SMURF1 和 NEDD4)和自噬受体(SQSTM1、TAX1BP1、CALCOCO2、OPTN 和 NBR1)在这一过程中发挥着关键作用。与糖结合并参与识别细胞内病原体(如 M. tb)造成的受损细胞膜的凝集素(LGALSs)是必不可少的。其中包括 LGALS3、LGALS8 和 LGALS9,它们对内膜损伤做出反应,并调节由有毒化学物质、蛋白质聚集体和细胞内病原体(包括 M. tb)造成的内膜损伤。它们还能激活选择性自噬和新的内溶酶体生物生成。LGALS3、LGALS9和LGALS8与各种成分相互作用,激活自噬和修复损伤,而CGAS-STING1则通过激活选择性自噬和产生具有抗霉菌功能的I型IFNs,在提供抗M.STING1 可激活 cGAMP 依赖性自噬,从而提供抵抗各种病原体的免疫力。此外,ds-DNA 激活的细胞质监控途径,如 NLRP3 和 AIM2 复合物介导的炎性体,可控制 M. tb。用 LGALSs 和 TRIM 蛋白的小调控分子调节 E3-Ub 连接酶可能是一种新型的基于宿主的结核病治疗方法。
{"title":"Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against <i>Mycobacterium tuberculosis</i>.","authors":"Asrar Ahmad Malik, Mohd Shariq, Javaid Ahmad Sheikh, Sheeba Zarin, Yashika Ahuja, Haleema Fayaz, Anwar Alam, Nasreen Z Ehtesham, Seyed E Hasnain","doi":"10.1080/1040841X.2024.2321494","DOIUrl":"10.1080/1040841X.2024.2321494","url":null,"abstract":"<p><p>Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of <i>M. tb</i> by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as <i>M. tb</i>, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including <i>M. tb</i>. They also activate selective autophagy and <i>de novo</i> endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against <i>M. tb</i> by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control <i>M. tb</i>. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"108-127"},"PeriodicalIF":6.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140101199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the antifungal effect of plant extracts on oral Candida spp. - a critical methodological analysis of the last decade. 评估植物提取物对口腔念珠菌的抗真菌作用--过去十年的重要方法学分析。
IF 6 2区 生物学 Q1 MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-03-18 DOI: 10.1080/1040841X.2024.2326995
M Maziere, J C Andrade, P Rompante, C F Rodrigues

Introduction: In 2022, the World Health Organization published a report encouraging researchers to focus on Candida spp. to strengthen the global response to fungal oral infections and antifungal resistance. In the context of innovative research, it seems pertinent to investigate the antifungal potential of natural extracts of plants and the methodology involved in the recent reports. The aim of this systematic review is to identify the current state of in vitro research on the evaluation of the ability of plant extracts to inhibit Candida spp.

Material and methods: A bibliographic search has been developed to on a 10-year period to identify which plant extracts have an antifungal effect on the Candida spp. found in the oral cavity.

Results: A total of 20 papers were reviewed and fulfilled all the selection criteria and were included in the full data analysis.

Discussion: Plants have been tested in a wide range of states - whole extracts, extraction of particular components such as flavonoids or polyphenols, or even using the plant to synthesize nanoparticles. Of forty-five plants tested, five of them did not show any effect against Candida spp., which weren't part of the same family. There is a wide range of plant that exhibit antifungal proprieties.

Conclusion: Many plants have been tested in a wide range of states - whole extracts, extraction of components such as flavonoids or polyphenols, or even using the plant to synthetize nanoparticles. The combination of plants, the addition of plants to a traditional antifungal and the interference with adhesion provided by some plants seem to be promising strategies. Nonetheless, on contrary to drugs, there is a critical lack of standardization on methodologies and protocols, which makes it difficult to compare data and, consequently, to conclude, beyond doubts, about the most promising plants to fight Candida spp. oral infections.

导言:2022 年,世界卫生组织发布了一份报告,鼓励研究人员关注念珠菌属,以加强全球应对真菌口腔感染和抗真菌耐药性的能力。在创新研究的背景下,调查植物天然提取物的抗真菌潜力以及近期报告中涉及的方法似乎很有意义。本系统性综述的目的是确定关于评估植物提取物抑制念珠菌属能力的体外研究现状:材料和方法:对 10 年内的文献进行了检索,以确定哪些植物提取物对口腔中的念珠菌属有抗真菌作用:结果:共审查了 20 篇论文,符合所有选择标准,并纳入了完整的数据分析:对植物进行测试的方式多种多样--整体提取、提取特定成分(如类黄酮或多酚),甚至利用植物合成纳米颗粒。在测试的 45 种植物中,有 5 种植物对念珠菌属没有任何作用,而这些念珠菌属并不属于同一家族。结论:有多种植物具有抗真菌特性:许多植物都在各种状态下进行过测试--全提取物、提取黄酮类或多酚等成分,甚至利用植物合成纳米颗粒。植物组合、在传统抗真菌剂中添加植物以及某些植物提供的粘附干扰似乎都是很有前景的策略。然而,与药物不同的是,在方法和规程方面严重缺乏标准化,因此很难对数据进行比较,也就很难毫无疑问地得出结论,认为哪些植物最有希望对抗念珠菌属口腔感染。
{"title":"Evaluation of the antifungal effect of plant extracts on oral <i>Candida</i> spp. - a critical methodological analysis of the last decade.","authors":"M Maziere, J C Andrade, P Rompante, C F Rodrigues","doi":"10.1080/1040841X.2024.2326995","DOIUrl":"10.1080/1040841X.2024.2326995","url":null,"abstract":"<p><strong>Introduction: </strong>In 2022, the World Health Organization published a report encouraging researchers to focus on <i>Candida</i> spp. to strengthen the global response to fungal oral infections and antifungal resistance. In the context of innovative research, it seems pertinent to investigate the antifungal potential of natural extracts of plants and the methodology involved in the recent reports. The aim of this systematic review is to identify the current state of <i>in vitro</i> research on the evaluation of the ability of plant extracts to inhibit <i>Candida</i> spp.</p><p><strong>Material and methods: </strong>A bibliographic search has been developed to on a 10-year period to identify which plant extracts have an antifungal effect on the <i>Candida</i> spp. found in the oral cavity.</p><p><strong>Results: </strong>A total of 20 papers were reviewed and fulfilled all the selection criteria and were included in the full data analysis.</p><p><strong>Discussion: </strong>Plants have been tested in a wide range of states - whole extracts, extraction of particular components such as flavonoids or polyphenols, or even using the plant to synthesize nanoparticles. Of forty-five plants tested, five of them did not show any effect against <i>Candida</i> spp., which weren't part of the same family. There is a wide range of plant that exhibit antifungal proprieties.</p><p><strong>Conclusion: </strong>Many plants have been tested in a wide range of states - whole extracts, extraction of components such as flavonoids or polyphenols, or even using the plant to synthetize nanoparticles. The combination of plants, the addition of plants to a traditional antifungal and the interference with adhesion provided by some plants seem to be promising strategies. Nonetheless, on contrary to drugs, there is a critical lack of standardization on methodologies and protocols, which makes it difficult to compare data and, consequently, to conclude, beyond doubts, about the most promising plants to fight <i>Candida</i> spp. oral infections.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"153-163"},"PeriodicalIF":6.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140142879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical Reviews in Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1