GDF15 Knockout Does Not Substantially Impact Perinatal Body Weight or Neonatal Outcomes in Mice.

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Endocrinology Pub Date : 2024-10-30 DOI:10.1210/endocr/bqae143
Molly C Mulcahy, Noura El Habbal, JeAnna R Redd, Haijing Sun, Brigid E Gregg, Dave Bridges
{"title":"GDF15 Knockout Does Not Substantially Impact Perinatal Body Weight or Neonatal Outcomes in Mice.","authors":"Molly C Mulcahy, Noura El Habbal, JeAnna R Redd, Haijing Sun, Brigid E Gregg, Dave Bridges","doi":"10.1210/endocr/bqae143","DOIUrl":null,"url":null,"abstract":"<p><p>Growth differentiation factor-15 (GDF15) increases in circulation during pregnancy and has been implicated in food intake, weight loss, complications of pregnancy, and metabolic illness. We used a Gdf15 knockout mouse model (Gdf15-/-) to assess the role of GDF15 in body weight regulation and food intake during pregnancy. We found that Gdf15-/- dams consumed a similar amount of food and gained comparable weight during the course of pregnancy compared with Gdf15+/+ dams. Insulin sensitivity on gestational day 16.5 was also similar between genotypes. In the postnatal period, litter size and survival rates were similar between genotypes. There was a modest reduction in birth weight of Gdf15-/- pups, but this difference was no longer evident from postnatal day 3.5 to 14.5. We observed no detectable differences in milk volume production or milk fat percentage. These data suggest that GDF15 is dispensable for changes in food intake, and body weight as well as insulin sensitivity during pregnancy in a mouse model.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae143","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Growth differentiation factor-15 (GDF15) increases in circulation during pregnancy and has been implicated in food intake, weight loss, complications of pregnancy, and metabolic illness. We used a Gdf15 knockout mouse model (Gdf15-/-) to assess the role of GDF15 in body weight regulation and food intake during pregnancy. We found that Gdf15-/- dams consumed a similar amount of food and gained comparable weight during the course of pregnancy compared with Gdf15+/+ dams. Insulin sensitivity on gestational day 16.5 was also similar between genotypes. In the postnatal period, litter size and survival rates were similar between genotypes. There was a modest reduction in birth weight of Gdf15-/- pups, but this difference was no longer evident from postnatal day 3.5 to 14.5. We observed no detectable differences in milk volume production or milk fat percentage. These data suggest that GDF15 is dispensable for changes in food intake, and body weight as well as insulin sensitivity during pregnancy in a mouse model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GDF15 基因敲除不会对小鼠围产期体重或新生儿预后产生重大影响。
生长分化因子-15(GDF15)在妊娠期间会在血液循环中增加,并与食物摄入、体重减轻、妊娠并发症和代谢性疾病有关。我们利用Gdf15基因敲除小鼠模型(Gdf15-/-)来评估GDF15在孕期体重调节和食物摄入中的作用。我们发现,与 Gdf15+/+ 母鼠相比,Gdf15-/- 母鼠在妊娠期间的食物摄入量和体重增加量相似。不同基因型的母鼠在妊娠第16.5天的胰岛素敏感性也相似。在产后,不同基因型的母鼠产仔数和存活率相似。Gdf15-/-幼崽的出生体重略有下降,但在出生后第3.5至14.5天,这种差异不再明显。我们没有观察到产奶量或乳脂率的差异。这些数据表明,在小鼠模型中,GDF15对于妊娠期间食物摄入量、体重以及胰岛素敏感性的变化是不可或缺的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
期刊最新文献
Mechanisms of Low Temperature-Induced Growth Hormone Resistance via TRPA1 Channel Activation in Male Nile Tilapia. Estrogen receptor signaling alters sperm DNA methylation landscape in adult male rats. Glutamatergic Input from Arcuate Nucleus Kiss1 Neurons to Preoptic Kiss1 Neurons is Required for LH Surge in Female Mice. Maternal exposure to ozone during implantation promotes a feminized transcriptomic profile in the male adolescent liver. Interaction of B0AT1 deficiency and diet on metabolic function and diabetes incidence in male NOD mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1