{"title":"Preparation of Cassia Bean Gum/Soy Protein Isolate Composite Matrix Emulsion Gel and Its Effect on the Stability of Meat Sausage.","authors":"Qiang Zou, Yuhan Zheng, Yudie Liu, Linghui Luo, Yuyou Chen, Guilian Ran, Dayu Liu","doi":"10.3390/gels10100643","DOIUrl":null,"url":null,"abstract":"<p><p>The use of plant-derived emulsified gel systems as fat substitutes for meat products has always been an important direction in the development of healthy foods. In this study, a composite matrix emulsion gel was prepared with soy protein isolate (SPI) and different concentrations of cassia bean gum (CG), and then the selected emulsion gel was applied to meat sausage as a fat substitute to explore its stability. Our results showed that the hardness, chewiness, viscosity, shear stress, and G' and G″ moduli of the emulsion gel increased considerably with the cassia bean gum concentration, the thickness of the emulsion gel increased, and the pore size decreased. The gel strength of the 1.75% CG/SPI emulsion gel was the highest, which was 586.91 g. The elasticity was 0.94 mm, the masticability was 452.94 mJ, and the water-holding capacity (WHC) was 98.45%. Then, the 1.75% CG/SPI emulsion gel obtained via screening was applied as a fat substitute in meat sausage. With an increase in the substitution amount, the cooking loss, emulsification stability, pH, color difference, texture, and antioxidant activity of the meat sausage before and after freezing and thawing increased first and then decreased. The indexes of meat sausage with 50% fat replacement were not considerably different from those of full-fat meat sausage. This study can provide a theoretical basis for the application of plant-derived emulsified gel systems as fat substitutes in meat sausage.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100643","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The use of plant-derived emulsified gel systems as fat substitutes for meat products has always been an important direction in the development of healthy foods. In this study, a composite matrix emulsion gel was prepared with soy protein isolate (SPI) and different concentrations of cassia bean gum (CG), and then the selected emulsion gel was applied to meat sausage as a fat substitute to explore its stability. Our results showed that the hardness, chewiness, viscosity, shear stress, and G' and G″ moduli of the emulsion gel increased considerably with the cassia bean gum concentration, the thickness of the emulsion gel increased, and the pore size decreased. The gel strength of the 1.75% CG/SPI emulsion gel was the highest, which was 586.91 g. The elasticity was 0.94 mm, the masticability was 452.94 mJ, and the water-holding capacity (WHC) was 98.45%. Then, the 1.75% CG/SPI emulsion gel obtained via screening was applied as a fat substitute in meat sausage. With an increase in the substitution amount, the cooking loss, emulsification stability, pH, color difference, texture, and antioxidant activity of the meat sausage before and after freezing and thawing increased first and then decreased. The indexes of meat sausage with 50% fat replacement were not considerably different from those of full-fat meat sausage. This study can provide a theoretical basis for the application of plant-derived emulsified gel systems as fat substitutes in meat sausage.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.