Long-Hao Yang, Fei-Fei Ye, Chris Nugent, Jun Liu, Ying-Ming Wang
{"title":"Belief-Rule-Based System with Self-organizing and Multi-temporal Modeling for Sensor-based Human Activity Recognition.","authors":"Long-Hao Yang, Fei-Fei Ye, Chris Nugent, Jun Liu, Ying-Ming Wang","doi":"10.1109/JBHI.2024.3485871","DOIUrl":null,"url":null,"abstract":"<p><p>Smart environment is an efficient and cost- effective way to afford intelligent supports for the elderly people. Human activity recognition (HAR) is a crucial aspect of the research field of smart environments, and it has attracted widespread attention lately. The goal of this study is to develop an effective sensor-based HAR model based on the belief-rule-based system (BRBS), which is one of representative rule-based expert systems. Specially, a new belief rule base (BRB) modeling approach is proposed by taking into account the self- organizing rule generation method and the multi-temporal rule representation scheme, in order to address the problem of combination explosion that existed in the traditional BRB modelling procedure and the time correlation found in continuous sensor data in chronological order. The new BRB modeling approach is so called self-organizing and multi-temporal BRB (SOMT-BRB) modeling procedure. A case study is further deducted to validate the effectiveness of the SOMT-BRB modeling procedure. By comparing with some conventional BRBSs and classical activity recognition models, the results show a significant improvement of the BRBS in terms of the number of belief rules, modelling efficiency, and activity recognition accuracy.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3485871","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Smart environment is an efficient and cost- effective way to afford intelligent supports for the elderly people. Human activity recognition (HAR) is a crucial aspect of the research field of smart environments, and it has attracted widespread attention lately. The goal of this study is to develop an effective sensor-based HAR model based on the belief-rule-based system (BRBS), which is one of representative rule-based expert systems. Specially, a new belief rule base (BRB) modeling approach is proposed by taking into account the self- organizing rule generation method and the multi-temporal rule representation scheme, in order to address the problem of combination explosion that existed in the traditional BRB modelling procedure and the time correlation found in continuous sensor data in chronological order. The new BRB modeling approach is so called self-organizing and multi-temporal BRB (SOMT-BRB) modeling procedure. A case study is further deducted to validate the effectiveness of the SOMT-BRB modeling procedure. By comparing with some conventional BRBSs and classical activity recognition models, the results show a significant improvement of the BRBS in terms of the number of belief rules, modelling efficiency, and activity recognition accuracy.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.