Score Prior Guided Iterative Solver for Speckles Removal in Optical Coherent Tomography Images.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-10-21 DOI:10.1109/JBHI.2024.3480928
Sanqian Li, Risa Higashita, Huazhu Fu, Bing Yang, Jiang Liu
{"title":"Score Prior Guided Iterative Solver for Speckles Removal in Optical Coherent Tomography Images.","authors":"Sanqian Li, Risa Higashita, Huazhu Fu, Bing Yang, Jiang Liu","doi":"10.1109/JBHI.2024.3480928","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence tomography (OCT) is a widely used non-invasive imaging modality for ophthalmic diagnosis. However, the inherent speckle noise becomes the leading cause of OCT image quality, and efficient speckle removal algorithms can improve image readability and benefit automated clinical analysis. As an ill-posed inverse problem, it is of utmost importance for speckle removal to learn suitable priors. In this work, we develop a score prior guided iterative solver (SPIS) with logarithmic space to remove speckles in OCT images. Specifically, we model the posterior distribution of raw OCT images as a data consistency term and transform the speckle removal from a nonlinear into a linear inverse problem in the logarithmic domain. Subsequently, the learned prior distribution through the score function from the diffusion model is utilized as a constraint for the data consistency term into the linear inverse optimization, resulting in an iterative speckle removal procedure that alternates between the score prior predictor and the subsequent non-expansive data consistency corrector. Experimental results on the private and public OCT datasets demonstrate that the proposed SPIS has an excellent performance in speckle removal and out-of-distribution (OOD) generalization. Further downstream automatic analysis on the OCT images verifies that the proposed SPIS can benefit clinical applications. The data and code are available at https://github.com/ lisanqian1212/SPIS.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3480928","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Optical coherence tomography (OCT) is a widely used non-invasive imaging modality for ophthalmic diagnosis. However, the inherent speckle noise becomes the leading cause of OCT image quality, and efficient speckle removal algorithms can improve image readability and benefit automated clinical analysis. As an ill-posed inverse problem, it is of utmost importance for speckle removal to learn suitable priors. In this work, we develop a score prior guided iterative solver (SPIS) with logarithmic space to remove speckles in OCT images. Specifically, we model the posterior distribution of raw OCT images as a data consistency term and transform the speckle removal from a nonlinear into a linear inverse problem in the logarithmic domain. Subsequently, the learned prior distribution through the score function from the diffusion model is utilized as a constraint for the data consistency term into the linear inverse optimization, resulting in an iterative speckle removal procedure that alternates between the score prior predictor and the subsequent non-expansive data consistency corrector. Experimental results on the private and public OCT datasets demonstrate that the proposed SPIS has an excellent performance in speckle removal and out-of-distribution (OOD) generalization. Further downstream automatic analysis on the OCT images verifies that the proposed SPIS can benefit clinical applications. The data and code are available at https://github.com/ lisanqian1212/SPIS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学相干断层扫描图像中斑点去除的分数先验引导迭代求解器
光学相干断层扫描(OCT)是一种广泛应用于眼科诊断的无创成像模式。然而,固有的斑点噪声成为影响 OCT 图像质量的主要原因,高效的斑点去除算法可以提高图像的可读性,有利于自动临床分析。作为一个难以解决的逆问题,学习合适的前验对于斑点去除至关重要。在这项工作中,我们开发了一种具有对数空间的分数先验引导迭代求解器(SPIS),用于去除 OCT 图像中的斑点。具体来说,我们将原始 OCT 图像的后验分布建模为数据一致性项,并将斑点去除从非线性问题转化为对数域的线性逆问题。随后,通过扩散模型中的分数函数学习到的先验分布被用作线性逆优化中数据一致性项的约束条件,从而形成一个在分数先验预测器和随后的非扩展数据一致性校正器之间交替进行的迭代斑点去除程序。在私有和公共 OCT 数据集上的实验结果表明,所提出的 SPIS 在斑点去除和分布外(OOD)泛化方面表现出色。对 OCT 图像的进一步下游自动分析验证了所提出的 SPIS 能为临床应用带来益处。数据和代码见 https://github.com/ lisanqian1212/SPIS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Machine Learning Identification and Classification of Mitosis and Migration of Cancer Cells in a Lab-on-CMOS Capacitance Sensing platform. Biomedical Information Integration via Adaptive Large Language Model Construction. BloodPatrol: Revolutionizing Blood Cancer Diagnosis - Advanced Real-Time Detection Leveraging Deep Learning & Cloud Technologies. EEG Detection and Prediction of Freezing of Gait in Parkinson's Disease Based on Spatiotemporal Coherent Modes. Functional Data Analysis of Hand Rotation for Open Surgical Suturing Skill Assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1