ThermICA: Novel Approach for a Multivariate Analysis of Facial Thermal Responses.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Engineering Pub Date : 2024-10-25 DOI:10.1109/TBME.2024.3486628
Federica Gioia, Alberto Greco, Alejandro Luis Callara, Nicola Vanello, Enzo Pasquale Scilingo, Luca Citi
{"title":"ThermICA: Novel Approach for a Multivariate Analysis of Facial Thermal Responses.","authors":"Federica Gioia, Alberto Greco, Alejandro Luis Callara, Nicola Vanello, Enzo Pasquale Scilingo, Luca Citi","doi":"10.1109/TBME.2024.3486628","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Infrared Thermography (IRT) has been used to monitor skin temperature variation in a contactless manner, in both clinical medicine and psychophysiology. Here, we introduce a new methodology to obtain information about autonomic correlates related to perspiration, peripheral vasomotility, and respiration from infrared recordings.</p><p><strong>Methods: </strong>Our approach involves a model-based decomposition of facial thermograms using Independent Component Analysis (ICA) and an ad-hoc preprocessing procedure. We tested our approach on 30 healthy volunteers whose psychophysiological state was stimulated as part of an experimental protocol.</p><p><strong>Results: </strong>Within-subject ICA analysis identified three independent components demonstrating correlations with the reference physiological signals. Moreover, a linear combination of independent components effectively predicted each physiological signal, achieving median correlations of 0.9 for electrodermal activity, 0.8 for respiration, and 0.73 for photoplethysmography peaks envelope. In addition, we performed a cross-validated inter-subject analysis, which allows to predict physiological signals from facial thermograms of unseen subjects.</p><p><strong>Conclusions/significance: </strong>Our findings validate the efficacy of features extracted from both original and thermal-derived signals for differentiating experimental conditions. This outcome emphasizes the sensitivity and promise of our approach, advocating for expanded investigations into thermal imaging within biomedical signal analysis. It underscores its potential for enhancing objective assessments of emotional states.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3486628","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Infrared Thermography (IRT) has been used to monitor skin temperature variation in a contactless manner, in both clinical medicine and psychophysiology. Here, we introduce a new methodology to obtain information about autonomic correlates related to perspiration, peripheral vasomotility, and respiration from infrared recordings.

Methods: Our approach involves a model-based decomposition of facial thermograms using Independent Component Analysis (ICA) and an ad-hoc preprocessing procedure. We tested our approach on 30 healthy volunteers whose psychophysiological state was stimulated as part of an experimental protocol.

Results: Within-subject ICA analysis identified three independent components demonstrating correlations with the reference physiological signals. Moreover, a linear combination of independent components effectively predicted each physiological signal, achieving median correlations of 0.9 for electrodermal activity, 0.8 for respiration, and 0.73 for photoplethysmography peaks envelope. In addition, we performed a cross-validated inter-subject analysis, which allows to predict physiological signals from facial thermograms of unseen subjects.

Conclusions/significance: Our findings validate the efficacy of features extracted from both original and thermal-derived signals for differentiating experimental conditions. This outcome emphasizes the sensitivity and promise of our approach, advocating for expanded investigations into thermal imaging within biomedical signal analysis. It underscores its potential for enhancing objective assessments of emotional states.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ThermICA:面部热反应多变量分析的新方法。
目的:在临床医学和心理生理学中,红外热成像技术(IRT)已被用于以非接触方式监测皮肤温度变化。在此,我们介绍一种新方法,从红外记录中获取与出汗、外周血管舒张和呼吸有关的自律神经相关信息:我们的方法包括使用独立分量分析(ICA)对面部热图进行基于模型的分解,以及一个临时预处理程序。我们在 30 名健康志愿者身上测试了我们的方法,作为实验方案的一部分,他们的心理生理状态受到了刺激:结果:受试者内 ICA 分析确定了三个独立成分,它们与参考生理信号具有相关性。此外,独立分量的线性组合可有效预测每种生理信号,皮电活动的中位相关性为 0.9,呼吸的中位相关性为 0.8,光电血压峰包络的中位相关性为 0.73。此外,我们还进行了受试者之间的交叉验证分析,从而可以从未曾见过的受试者面部热成像图中预测生理信号:我们的研究结果验证了从原始信号和热衍生信号中提取的特征在区分实验条件方面的功效。这一结果强调了我们方法的灵敏度和前景,主张在生物医学信号分析中扩大对热成像的研究。它强调了热成像在增强情绪状态客观评估方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Biomedical Engineering Handling Editors Information IEEE Engineering in Medicine and Biology Society Information IEEE Transactions on Biomedical Engineering Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1