Raccoons Reveal Hidden Diversity in Trabecular Bone Development.

IF 2.2 4区 生物学 Q2 BIOLOGY Integrative Organismal Biology Pub Date : 2024-10-21 eCollection Date: 2024-01-01 DOI:10.1093/iob/obae038
T Reinecke, K D Angielczyk
{"title":"Raccoons Reveal Hidden Diversity in Trabecular Bone Development.","authors":"T Reinecke, K D Angielczyk","doi":"10.1093/iob/obae038","DOIUrl":null,"url":null,"abstract":"<p><p>Trabecular bone, and its ability to rapidly modify its structure in response to strain exerted on skeletal elements, has garnered increased attention from researchers with the advancement of CT technology that allows for the analysis of its complex lattice-like framework. Much of this research has focused on adults of select taxa, but analysis into trabecular development across ontogeny remains limited. In this paper, we explore the shift in several trabecular characteristics in the articular head of the humerus and femur in <i>Procyon lotor</i> across the entirely of the species' lifespan. Our results show that while body mass plays a role in determining trabecular structure, other elements such as bone growth, increased activity, and puberty result in trends not observed in the interspecific analysis of adults. Furthermore, differences in the trabeculae of the humerus and femur suggest combining distinct boney elements in meta-analysis may obfuscate the variety in the structures. Finally, rates at which fore and hindlimb trabeculae orient themselves early in life differ enough to warrant further exploration to identify the currently unknown causes for their variation.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Organismal Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/iob/obae038","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Trabecular bone, and its ability to rapidly modify its structure in response to strain exerted on skeletal elements, has garnered increased attention from researchers with the advancement of CT technology that allows for the analysis of its complex lattice-like framework. Much of this research has focused on adults of select taxa, but analysis into trabecular development across ontogeny remains limited. In this paper, we explore the shift in several trabecular characteristics in the articular head of the humerus and femur in Procyon lotor across the entirely of the species' lifespan. Our results show that while body mass plays a role in determining trabecular structure, other elements such as bone growth, increased activity, and puberty result in trends not observed in the interspecific analysis of adults. Furthermore, differences in the trabeculae of the humerus and femur suggest combining distinct boney elements in meta-analysis may obfuscate the variety in the structures. Finally, rates at which fore and hindlimb trabeculae orient themselves early in life differ enough to warrant further exploration to identify the currently unknown causes for their variation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浣熊揭示骨小梁发育过程中隐藏的多样性
随着 CT 技术的发展,研究人员越来越关注骨小梁及其快速改变结构以应对骨骼元素所受应变的能力,CT 技术可对骨小梁复杂的格子状框架进行分析。这些研究大多集中在特定类群的成体上,但对小梁在整个发育过程中的发育情况的分析仍然有限。在本文中,我们探讨了荷包牡丹(Procyon lotor)肱骨和股骨关节头小梁特征在整个物种生命周期中的变化。我们的研究结果表明,虽然体重在决定骨小梁结构方面起着一定的作用,但其他因素(如骨骼生长、活动增加和青春期)也导致了在成年种间分析中未观察到的趋势。此外,肱骨和股骨骨小梁的差异表明,在荟萃分析中将不同的骨元素结合在一起可能会混淆结构的多样性。最后,前肢和后肢骨小梁在生命早期的定向率存在差异,值得进一步探讨,以确定目前尚不清楚的差异原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
6.70%
发文量
48
审稿时长
20 weeks
期刊最新文献
Raccoons Reveal Hidden Diversity in Trabecular Bone Development. Ocean Planning and Conservation in the Age of Climate Change: A Roundtable Discussion. Volumetric versus Element-scaling Mass Estimation and Its Application to Permo-Triassic Tetrapods. The Role of Polycystic Kidney Disease-Like Homologs in Planarian Nervous System Regeneration and Function. Risky Business: Predator Chemical Cues Mediate Morphological Changes in Freshwater Snails.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1