A split-belt instrumented treadmill with uneven terrain

IF 2.4 3区 医学 Q3 BIOPHYSICS Journal of biomechanics Pub Date : 2024-10-19 DOI:10.1016/j.jbiomech.2024.112376
Seyed-Saleh Hosseini-Yazdi , Arthur D. Kuo
{"title":"A split-belt instrumented treadmill with uneven terrain","authors":"Seyed-Saleh Hosseini-Yazdi ,&nbsp;Arthur D. Kuo","doi":"10.1016/j.jbiomech.2024.112376","DOIUrl":null,"url":null,"abstract":"<div><div>The biomechanics of walking are far less understood for uneven terrain than flat or even surfaces. This is due in part to a lack of ground reaction force and moment recordings from each leg. These are often obtained with split-belt instrumented treadmills, which are currently incompatible with uneven terrain, making it difficult to perform biomechanics analyses such as inverse dynamics. Here we show how a standard split-belt instrumented treadmill (Bertec, Inc., Columbus, OH) can be modified to accommodate a variety of uneven terrains. The principal design considerations are structural clearance to allow passage of an uneven treadmill belt and fabrication of the terrain. We designed mechanical components with sufficient clearance for terrains up to 0.045 m high, and formed the terrain from uneven strips of polystyrene. Measured ground reaction forces from each leg at typical walking speeds agreed well with an intact benchmark treadmill (minimum interclass cross correlation score = 0.97). The modifications had negligible effect on the treadmill’s structural strength. The terrain produced some noise-like vibrations, but at much higher frequencies than fundamental to human locomotion. The uneven terrain treadmill can record many steps of the full complement of ground reaction forces and moments from individual legs.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"176 ","pages":"Article 112376"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004548","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The biomechanics of walking are far less understood for uneven terrain than flat or even surfaces. This is due in part to a lack of ground reaction force and moment recordings from each leg. These are often obtained with split-belt instrumented treadmills, which are currently incompatible with uneven terrain, making it difficult to perform biomechanics analyses such as inverse dynamics. Here we show how a standard split-belt instrumented treadmill (Bertec, Inc., Columbus, OH) can be modified to accommodate a variety of uneven terrains. The principal design considerations are structural clearance to allow passage of an uneven treadmill belt and fabrication of the terrain. We designed mechanical components with sufficient clearance for terrains up to 0.045 m high, and formed the terrain from uneven strips of polystyrene. Measured ground reaction forces from each leg at typical walking speeds agreed well with an intact benchmark treadmill (minimum interclass cross correlation score = 0.97). The modifications had negligible effect on the treadmill’s structural strength. The terrain produced some noise-like vibrations, but at much higher frequencies than fundamental to human locomotion. The uneven terrain treadmill can record many steps of the full complement of ground reaction forces and moments from individual legs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地形不平的分带仪表跑步机。
与平坦或平整的路面相比,人们对不平坦路面上行走的生物力学了解要少得多。部分原因是缺乏每条腿的地面反作用力和力矩记录。这些数据通常是通过分带式仪器跑步机获得的,目前这种跑步机与不平地形不兼容,因此很难进行反动力学等生物力学分析。在此,我们展示了如何对标准分带仪器跑步机(Bertec 公司,俄亥俄州哥伦布市)进行改装,以适应各种不平坦的地形。主要的设计考虑因素是结构间隙,以允许不平整的跑步机带通过,以及地形的制造。我们设计了具有足够间隙的机械部件,以适应高达 0.045 米的地形,并用不平整的聚苯乙烯条形成地形。在典型步行速度下测量到的每条腿的地面反作用力与完整的基准跑步机非常吻合(最小类间交叉相关得分 = 0.97)。改装对跑步机结构强度的影响可以忽略不计。地形会产生一些类似噪音的振动,但频率远高于人类运动的基本频率。不平整地形跑步机可以记录许多步的全部地面反作用力和来自单腿的力矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
期刊最新文献
Effects of knee joint position on the triceps Suræ torque-size relationship during plantarflexion in healthy young adults. Differential T2* changes in tibialis anterior and soleus: Influence of exercise type and perceived exertion. Shear viscoelastic properties of human orbital fat. Société de Biomécanique young investigator award 2023: Estimation of intersegmental load at L5-S1 during lifting/lowering tasks using force plate free markerless motion capture. Changes in lower extremity muscle coordination over a 30-minute walk do not differ by muscle fatigability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1