Aléxia Fernandes , Mário J. Costa , Bruno Mezêncio , João Paulo Vilas-Boas , Ricardo J. Fernandes
{"title":"Breaststroke and butterfly intercycle kinematic variation according to different competitive levels with Statistical Parametric Mapping analysis","authors":"Aléxia Fernandes , Mário J. Costa , Bruno Mezêncio , João Paulo Vilas-Boas , Ricardo J. Fernandes","doi":"10.1016/j.jbiomech.2024.112380","DOIUrl":null,"url":null,"abstract":"<div><div>Breaststroke and butterfly are complex swimming techniques requiring refined motor skills to perform successfully, with coordinated and consistent interaction between propulsive and resistive forces being decisive when considering swimmers expertise. The current study analysed those techniques intercycle kinematic variation in two swimmers cohorts. Twenty elite and 15 national level swimmers performed one 25 m breaststroke and one 25 m butterfly sprints, with an underwater camera recording images at 120 Hz in the sagittal plane. Mean velocity, maximum and minimum velocities, stroke rate and length, intracycle velocity variation and phases relative duration were calculated for consecutive cycles (elite: five breaststroke/butterfly, national level: eight breaststroke/seven butterfly). The two highest peaks and the lower peak in between in breaststroke were also addressed. Intercycle and inter-groups analysis were performed using ANOVA, ANCOVA and Statistical Parametric Mapping. Elite and national level differed regarding breaststroke mean and maximum velocities, 1st and 2nd peaks and minimum between peaks (1.30 ± 0.02 vs 1.15 ± 0.02 m/s, 2.13 ± 0.05 vs 1.88 ± 0.06 m/s, 1.63 ± 0.05 vs 1.48 ± 0.05 m/s, 2.13 ± 0.05 vs 1.86 ± 0.05 m/s, 1.33 ± 0.04 vs 1.23 ± 0.04 m/s), and butterfly mean, maximum and minimum velocities, stroke rate and intracycle velocity variation, respectively (1.65 ± 0.01 vs 1.50 ± 0.01 m/s, 2.20 ± 0.04 vs 2.09 ± 0.04 m/s, 1.12 ± 0.04 vs 0.79 ± 0.04 m/s, (57.9 ± 0.9 vs 54.9 ± 1.0cycles/min, 18.4 ± 1.3 vs 23.7 ± 1.3 %). Elite and national level swimmers showed consistent breaststroke intercycle kinematic variation, but a butterfly mean velocity decay, with the upper limbs release and recovery, and the outsweep phases originating variability between butterfly cycles. Skill levels contrasted in technical and strategic features at sprint breaststroke and butterfly but showed similar velocity variability between consecutive swimming cycles.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"176 ","pages":"Article 112380"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004585","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Breaststroke and butterfly are complex swimming techniques requiring refined motor skills to perform successfully, with coordinated and consistent interaction between propulsive and resistive forces being decisive when considering swimmers expertise. The current study analysed those techniques intercycle kinematic variation in two swimmers cohorts. Twenty elite and 15 national level swimmers performed one 25 m breaststroke and one 25 m butterfly sprints, with an underwater camera recording images at 120 Hz in the sagittal plane. Mean velocity, maximum and minimum velocities, stroke rate and length, intracycle velocity variation and phases relative duration were calculated for consecutive cycles (elite: five breaststroke/butterfly, national level: eight breaststroke/seven butterfly). The two highest peaks and the lower peak in between in breaststroke were also addressed. Intercycle and inter-groups analysis were performed using ANOVA, ANCOVA and Statistical Parametric Mapping. Elite and national level differed regarding breaststroke mean and maximum velocities, 1st and 2nd peaks and minimum between peaks (1.30 ± 0.02 vs 1.15 ± 0.02 m/s, 2.13 ± 0.05 vs 1.88 ± 0.06 m/s, 1.63 ± 0.05 vs 1.48 ± 0.05 m/s, 2.13 ± 0.05 vs 1.86 ± 0.05 m/s, 1.33 ± 0.04 vs 1.23 ± 0.04 m/s), and butterfly mean, maximum and minimum velocities, stroke rate and intracycle velocity variation, respectively (1.65 ± 0.01 vs 1.50 ± 0.01 m/s, 2.20 ± 0.04 vs 2.09 ± 0.04 m/s, 1.12 ± 0.04 vs 0.79 ± 0.04 m/s, (57.9 ± 0.9 vs 54.9 ± 1.0cycles/min, 18.4 ± 1.3 vs 23.7 ± 1.3 %). Elite and national level swimmers showed consistent breaststroke intercycle kinematic variation, but a butterfly mean velocity decay, with the upper limbs release and recovery, and the outsweep phases originating variability between butterfly cycles. Skill levels contrasted in technical and strategic features at sprint breaststroke and butterfly but showed similar velocity variability between consecutive swimming cycles.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.