{"title":"Effect of peptide hydrophilicity on membrane curvature and permeation.","authors":"Anjana V Mathath, Debashree Chakraborty","doi":"10.1063/5.0226869","DOIUrl":null,"url":null,"abstract":"<p><p>Using a well-developed reaction coordinate in umbrella sampling, we studied the single peptide permeation through a model cancerous cell membrane, varying the hydrophilicity and the charge of the peptides. Two peptides, melittin and pHD108, were studied. The permeation mechanism differs from a barrel-stave-like mechanism to toroidal pore and vesicle formation based on the number and the placement of the hydrophilic amino acids in the peptide. Membrane curvature changes dynamically as the permeation process occurs. In the case of vesicles, the peptide traverses along a smooth, homogenous pathway, whereas a rugged, steep pathway was found when lipid molecules did not line up along the wall of the membrane (barrel-stave-like mechanism). A mechanism similar to a toroidal pore consists of multiple minima. Higher free energy was found for the permeating terminal containing charged amino acid residues. Vesicle formation was found for pHD108 peptide N-terminal with a maximum membrane thinning effect of 54.4% with free energy cost of 8.20 ± 0.10 kcal mol-1 and pore radius of 2.33 ± 0.07 nm. Insights gained from this study can help to build synthetic peptides for drug delivery.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0226869","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Using a well-developed reaction coordinate in umbrella sampling, we studied the single peptide permeation through a model cancerous cell membrane, varying the hydrophilicity and the charge of the peptides. Two peptides, melittin and pHD108, were studied. The permeation mechanism differs from a barrel-stave-like mechanism to toroidal pore and vesicle formation based on the number and the placement of the hydrophilic amino acids in the peptide. Membrane curvature changes dynamically as the permeation process occurs. In the case of vesicles, the peptide traverses along a smooth, homogenous pathway, whereas a rugged, steep pathway was found when lipid molecules did not line up along the wall of the membrane (barrel-stave-like mechanism). A mechanism similar to a toroidal pore consists of multiple minima. Higher free energy was found for the permeating terminal containing charged amino acid residues. Vesicle formation was found for pHD108 peptide N-terminal with a maximum membrane thinning effect of 54.4% with free energy cost of 8.20 ± 0.10 kcal mol-1 and pore radius of 2.33 ± 0.07 nm. Insights gained from this study can help to build synthetic peptides for drug delivery.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.