Antibacterial Biocomposite Based on Chitosan/Pluronic/Agarose Noncovalent Hydrogel: Controlled Drug Delivery by Alginate/Tetracycline Beads System.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of Functional Biomaterials Pub Date : 2024-09-28 DOI:10.3390/jfb15100286
Hossein Abdollahi, Saber Amiri, Farzaneh Amiri, Somayeh Moradi, Payam Zarrintaj
{"title":"Antibacterial Biocomposite Based on Chitosan/Pluronic/Agarose Noncovalent Hydrogel: Controlled Drug Delivery by Alginate/Tetracycline Beads System.","authors":"Hossein Abdollahi, Saber Amiri, Farzaneh Amiri, Somayeh Moradi, Payam Zarrintaj","doi":"10.3390/jfb15100286","DOIUrl":null,"url":null,"abstract":"<p><p>Designing a wound dressing with controlled uptake, antibacterial, and proper biocompatibility is crucial for the appropriate wound healing process. In this study, alginate/tetracycline (Alg/TC) beads were produced and embedded into chitosan/pluronic/agarose semi-interpenetrating polymer network hydrogel, which serves as a potential biocompatible dressing for treating skin wounds. The effect of pluronic content on the porosity, swelling, mechanical characteristics, and degradation of the hydrogel was investigated. Furthermore, the impact of Alg beads on TC release was subsequently examined. In the absence of Alg beads, faster release was observed. However, after incorporating beads into the hydrogels, the release was sustained. Particularly, the hydrogel containing Alg beads exhibited a nearly linear release, reaching 74% after 2 days in acidic media. The antimicrobial activity and biocompatibility of the hydrogel were also evaluated to assess the capability of the TC-loaded hydrogels for wound dressing applications. The hydrogel demonstrated efficient antibacterial features against Gram-positive and Gram-negative bacteria. Additionally, the sample behavior was evaluated against exposure to yeast. Furthermore, based on biocompatibility studies using HFF2 cells, the TC-loaded hydrogel exhibited remarkable biocompatibility. Overall, this novel composite hydrogel shows remarkable biocompatibility and antibacterial activities which can be used as a great potential wound dressing to prevent wound infections due to its effective inhibition of bacterial growth.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15100286","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing a wound dressing with controlled uptake, antibacterial, and proper biocompatibility is crucial for the appropriate wound healing process. In this study, alginate/tetracycline (Alg/TC) beads were produced and embedded into chitosan/pluronic/agarose semi-interpenetrating polymer network hydrogel, which serves as a potential biocompatible dressing for treating skin wounds. The effect of pluronic content on the porosity, swelling, mechanical characteristics, and degradation of the hydrogel was investigated. Furthermore, the impact of Alg beads on TC release was subsequently examined. In the absence of Alg beads, faster release was observed. However, after incorporating beads into the hydrogels, the release was sustained. Particularly, the hydrogel containing Alg beads exhibited a nearly linear release, reaching 74% after 2 days in acidic media. The antimicrobial activity and biocompatibility of the hydrogel were also evaluated to assess the capability of the TC-loaded hydrogels for wound dressing applications. The hydrogel demonstrated efficient antibacterial features against Gram-positive and Gram-negative bacteria. Additionally, the sample behavior was evaluated against exposure to yeast. Furthermore, based on biocompatibility studies using HFF2 cells, the TC-loaded hydrogel exhibited remarkable biocompatibility. Overall, this novel composite hydrogel shows remarkable biocompatibility and antibacterial activities which can be used as a great potential wound dressing to prevent wound infections due to its effective inhibition of bacterial growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于壳聚糖/丙酮/琼脂糖非共价水凝胶的抗菌生物复合材料:藻酸/四环素珠系统的可控药物输送
设计一种具有可控吸收、抗菌和适当生物相容性的伤口敷料对于伤口的适当愈合过程至关重要。本研究制作了海藻酸/四环素(Alg/TC)微珠,并将其嵌入壳聚糖/pluronic/琼脂糖半互穿聚合物网络水凝胶中,作为一种潜在的生物相容性敷料用于治疗皮肤伤口。研究了pluronic含量对水凝胶的孔隙率、膨胀、机械特性和降解的影响。此外,还研究了 Alg 珠对 TC 释放的影响。在没有 Alg 珠的情况下,观察到的释放速度更快。但是,在水凝胶中加入珠子后,释放就会持续。特别是含有 Alg 珠子的水凝胶表现出近乎线性的释放,在酸性介质中 2 天后释放量达到 74%。此外,还对水凝胶的抗菌活性和生物相容性进行了评估,以评估负载 TC 的水凝胶在伤口敷料应用中的能力。该水凝胶对革兰氏阳性和革兰氏阴性细菌具有高效的抗菌特性。此外,还对样品暴露于酵母菌的行为进行了评估。此外,根据使用 HFF2 细胞进行的生物相容性研究,TC 负载水凝胶表现出显著的生物相容性。总之,这种新型复合水凝胶具有出色的生物相容性和抗菌活性,能有效抑制细菌生长,因此可用作一种极具潜力的伤口敷料,防止伤口感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
期刊最新文献
A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy. Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants. PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles. Benzyldimethyldodecyl Ammonium Chloride-Doped Denture-Based Resin: Impact on Strength, Surface Properties, Antifungal Activities, and In Silico Molecular Docking Analysis. A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1