A Novel Fluorescent Sensor for Detecting Ag+ and Hg2+ ions: A Combination of Theoretical and Experimental Studies.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Fluorescence Pub Date : 2024-10-23 DOI:10.1007/s10895-024-03988-z
Nguyen Khoa Hien, Mai Van Bay, Quan V Vo, Ngo Duy Y, Duong Tuan Quang, Pham Cam Nam
{"title":"A Novel Fluorescent Sensor for Detecting Ag<sup>+</sup> and Hg<sup>2+</sup> ions: A Combination of Theoretical and Experimental Studies.","authors":"Nguyen Khoa Hien, Mai Van Bay, Quan V Vo, Ngo Duy Y, Duong Tuan Quang, Pham Cam Nam","doi":"10.1007/s10895-024-03988-z","DOIUrl":null,"url":null,"abstract":"<p><p>A new fluorescent sensor based on diethylaminosalicylaldehyde-thiosemicarbazide (DST) was studied using a combination of density functional theory calculations and experimental investigations. DST was able to detect the metal ions Ag<sup>+</sup> and Hg<sup>2+</sup> in the presence of various competing metal ions and anions, with detection limits of 0.45 and 0.34 µM, respectively. The DST sensor could operate in a fully aqueous environment and within a wide pH range from 5 to 9. Density functional theory studies supported the experimental findings in determining the stable structures of the DST sensor and the complexes between DST and the Ag<sup>+</sup> and Hg<sup>2+</sup> ions, as well as elucidating the fluorescence ON-OFF mechanism in the DST sensor and the complexes.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03988-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A new fluorescent sensor based on diethylaminosalicylaldehyde-thiosemicarbazide (DST) was studied using a combination of density functional theory calculations and experimental investigations. DST was able to detect the metal ions Ag+ and Hg2+ in the presence of various competing metal ions and anions, with detection limits of 0.45 and 0.34 µM, respectively. The DST sensor could operate in a fully aqueous environment and within a wide pH range from 5 to 9. Density functional theory studies supported the experimental findings in determining the stable structures of the DST sensor and the complexes between DST and the Ag+ and Hg2+ ions, as well as elucidating the fluorescence ON-OFF mechanism in the DST sensor and the complexes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测 Ag+ 和 Hg2+ 离子的新型荧光传感器:理论与实验研究的结合。
利用密度泛函理论计算和实验研究相结合的方法,研究了一种基于二乙氨基水杨醛-硫代氨基脲(DST)的新型荧光传感器。在存在各种竞争金属离子和阴离子的情况下,DST 能够检测金属离子 Ag+ 和 Hg2+,检测限分别为 0.45 和 0.34 µM。DST 传感器可在全水环境和 5 至 9 的宽 pH 值范围内工作。密度泛函理论研究支持了实验结果,确定了 DST 传感器以及 DST 与 Ag+ 和 Hg2+ 离子之间复合物的稳定结构,并阐明了 DST 传感器和复合物的荧光开-关机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
期刊最新文献
Highly Potent Fluorenone Azine-based ESIPT Active Fluorophores for Cellular Viscosity Detection and Bioimaging Applications. Construction of a Dual-Mode Sensing Platform for Ultra-fast Detection of Bisulfite in Food and Environmental Systems. Constructing Conjugated Polymer Composite Fluorescent Nanodrug Materials for Treating Abdominal Aortic Aneurysm. One-Pot Synthesis of Ce-Based Nanocomposites for Fluorescence and Colorimetric Dual-Mode Sensing Platform Construction. Analysis of Microscopic Remaining Oil Based on the Fluorescence Image and Deep Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1